
Towards Virtual Networks for Virtual Machine Grid Computing

Ananth I. Sundararaj Peter A. Dinda
{ais,pdinda}@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract

Virtual machines can greatly simplify wide-area dis-
tributed computing by lowering the level of abstraction to
the benefit of both resource providers and users. Network-
ing, however, can be a challenge because remote sites are
loath to provide connectivity to any machine attached to the
site network by outsiders. In response, we have developed
a simple and efficient layer two virtual network tool that in
effect connects the virtual machine to the home network of
the user, making the connectivity problem identical to that
faced by the user when connecting any new machine to his
own network. We describe this tool and evaluate its perfor-
mance in LAN and WAN environments. Next, we describe
our plans to enhance it to become an adaptive virtual net-
work that will dynamically modify its topology and routing
rules in response to the offered traffic load of the virtual
machines it supports and to the load of the underlying net-
work. We formalize the adaptation problem induced by this
scheme and take initial steps to solving it. The virtual net-
work will also be able to use underlying resource reserva-
tion mechanisms on behalf of virtual machines. Both adap-
tation and reservation will work with existing, unmodified
applications and operating systems.

1 Introduction

Recently, interest in using OS-level virtual machines
as the abstraction for grid computing and for distributed
computing in general has been growing [11, 21, 13, 15].
Virtual machine monitors such as VMware [37], IBM’s
VM [17], and Microsoft’s Virtual Server [27], as well as vir-
tual server technology such as UML [4], Ensim [9], and Vir-
tuozzo [36], have the potential to greatly simplify manage-
ment from the perspective of resource owners and to pro-

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, EIA-0224449, and
a gift from VMWare. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation (NSF).

vide great flexibility to resource users. Much grid middle-
ware and application software is quite complex. Being able
to package a working virtual machine image that contains
the correct operating system, libraries, middleware, and ap-
plication can make it much easier to deploy something new,
using relatively simple middleware that knows only about
virtual machines. We have made a detailed case for grid
computing on virtual machines in a previous paper [11].

Unlike traditional units of work in distributed systems,
such as jobs, processes, or RPC calls, a virtual machine has,
and must have, a direct presence on the network at layer 3
and below. We must be able to communicate with it. VMM
software recognizes this need and typically creates a virtual
Ethernet card for the guest operating system to use. This
virtual card is then emulated using the physical network
card in the host machine in one of several ways. The most
flexible of these bridges the virtual card directly to the same
network as the physical card, making the virtual machine
a first class citizen on the same network, indistinguishable
from a physical machine.

Within a single site, this works very well, as there are
existing mechanisms to provide new machines with access.
Grid computing, however, is intrinsically about using mul-
tiple sites, with different network management and security
philosophies, often spread over the wide area [12]. Running
a virtual machine on a remote site is equivalent to visiting
the site and connecting a new machine. The nature of the
network presence (active Ethernet port, traffic not blocked,
routable IP address, forwarding of its packets through fire-
walls, etc) the machine gets, or whether it gets a presence
at all, depends completely on the policy of the site. The im-
pact of this variation is further exacerbated as the number
of sites is increased, and if we permit virtual machines to
migrate from site to site.

To deal with this problem in our own project, we have
developed VNET, a simple layer 2 virtual network tool. Us-
ing VNET, virtual machines have no network presence at
all on a remote site. Instead, VNET provides a mechanism
to project their virtual network cards onto another network,
which also moves the network management problem from
one network to another. For example, all of a user’s vir-

tual machines can be made to appear to be connected to
the user’s own network, where the user can use his existing
mechanisms to assure that they have appropriate network
presence. Because the virtual network is a layer 2 one, a
machine can be migrated from site to site without changing
its presence—it always keeps the same IP address, routes,
etc. The first part of this paper describes how VNET works
and presents performance results for local-area and wide-
area use. VNET is publicly available from us.

As we have developed VNET, we have come to believe
that virtual networks designed specifically for virtual ma-
chine grid computing can be used for much more than sim-
plifying the management problem. In particular, because
they see all of the traffic of the virtual machines, they are
in an ideal position to (1) measure the traffic load and ap-
plication topology of the virtual machines, (2) monitor the
underlying network, (3) adapt application as measured by
(1) to the network as measured by (2) by relocating virtual
machines and modifying the virtual network topology and
routing rules, and (4) take advantage of resource reservation
mechanisms in the underlying network. Best of all, these
services can be done on behalf of existing, unmodified ap-
plications and operating systems running in the virtual ma-
chines. The second part of this paper lays out this argument,
formalizes the adaptation problem, and takes initial steps to
solving it.

2 Related work

Our work builds on operating-system level virtual ma-
chines, of which there are essentially two kinds. Virtual ma-
chine monitors, such as VMware [37], IBM’s VM [17], and
Microsoft’s Virtual Server [27] present an abstraction that
is identical to a physical machine. For example, VMWare,
which we use, provides the abstraction of an Intel IA32-
based PC (including one or more processors, memory, IDE
or SCSI disk controllers, disks, network interface cards,
video card, BIOS, etc.) On top of this abstraction, almost
any existing PC operating system and its applications can
be installed and run. The overhead of this emulation can be
made to be quite low [33, 11]. Our work is also applicable
to virtual server technology such as UML [4], Ensim [9],
Denali [38], and Virtuozzo [36]. Here, existing operating
systems are extended to provide a notion of server id (or
protection domain) along with process id. Each OS call is
then evaluated in the context of the server id of the call-
ing process, giving the illusion that the processes associated
with a particular server id are the only processes in the OS
and providing root privileges that are effective only within
that protection domain. In both cases, the virtual machine
has the illusion of having network adaptors that it can use
as it sees fit, which is the essential requirement of our work.

The Stanford Collective is seeking to create a compute

utility in which “virtual appliances” (virtual machines with
task-specialized operating systems and applications that are
intended to be easy to maintain) can be run in a trusted en-
vironment [30, 13]. Part of the Collective middleware is
able to create “virtual appliance networks” (VANs), which
essentially tie a group of virtual appliances to an Ether-
net VLAN. Our work is similar in that we also, in effect,
tie a group of virtual machines together as a LAN. How-
ever, we differ in that the collective middleware attempts
also to solve IP address and routing, while we remain com-
pletely at layer 2 and push this administration problem back
to the user’s site. Another difference is that we expect to
be running in a wide area environment in which remote
sites are not under our administrative control. Hence, we
make the administrative requirements at the remote site ex-
tremely simple and focused almost entirely on the machine
that will host the virtual machine. Finally, because the na-
ture of the applications and networking hardware in grid
computing tend to be different (parallel scientific applica-
tions running on clusters with very high speed wide area
networks) from virtual appliances, the nature of the adapta-
tion problems and the exploitation of resource reservations
made possible by VNET are also different. A contribution
of this paper is to describe these problems. However, we
do point out that one adaptation mechanism that we plan to
use, migration, has been extensively studied by the Collec-
tive group [31].

Perhaps closest to our work is that of Purdue’s SODA
project, which aims to build a service-on-demand grid in-
frastructure based on virtual server technology [21] and
virtual networking [22]. Similar to VANs in the Collec-
tive, the SODA virtual network, VIOLIN, allows for the
dynamic setup of an arbitrary private layer 2 and layer 3
virtual network among virtual servers. In contrast, VNET
works entirely at layer 2 and with the more general virtual
machine monitor model. Furthermore, our model has been
much more strongly motivated by the need to deal with un-
friendly administrative policies at remote sites and to per-
form adaptation and exploit resource reservations, as we de-
scribe later. This paper also includes detailed performance
results for VNET, which are not currently available, to the
best of our knowledge, for VAN or VIOLIN.

VNET is a virtual private network (VPN [10, 14, 19])
that implements a virtual local area network (VLAN [18])
spread over a wide area using layer 2 tunneling [35]. We
are extending VNET to act as an adaptive overlay net-
work [1, 3, 16, 20] for virtual machines as opposed to for
specific applications. The adaptation problems introduced
are in some ways generalizations (because we have control
over machine location as well as the overlay topology and
routing) of the problems encountered in the design of and
routing on overlays [32]. There is also a strong connection
to parallel task graph mapping problems [2, 23].

3 Virtuoso model

We are developing middleware, Virtuoso, for virtual ma-
chine grid computing that for a user very closely emulates
the existing process of buying, configuring, and using an
Intel-based computer, a process with which many users and
certainly all system administrators are familiar with.

In our model, the user visits a web site, much like the
web site of Dell or IBM or any other company that sells
Intel-based computers. The site allows him to specify the
hardware and software configuration of a computer and its
performance requirements, and then order one or more of
them. The user receives a reference to the virtual machine
which he can then use to start, stop, reset, and clone the
machine. The system presents the illusion that the virtual
machine is right next to the user. The console display is
sent back to the user’s machine, the CD-ROM is proxied to
the user’s machine’s CD-ROM, and the virtual machine ap-
pears to be plugged into the network side-by-side with the
user’s machine. The user can then install additional soft-
ware, including operating systems. The system is permitted
to move the virtual machine from site to site to optimize its
performance or cost, but must preserve the illusion.

We use VMWare GSX Server [37] running on Linux as
our virtual machine monitor. Although GSX provides a fast
remote console, we use VNC [29] in order to remain in-
dependent of the underlying virtual machine monitor. We
proxy CD-ROM devices using Linux’s extended network
block device, or by using CD image files. Network proxy-
ing is done using VNET, as described in the next section.

4 VNET: A simple layer 2 virtual network

VNET is the part of our system that creates and main-
tains the networking illusion, that the user’s virtual ma-
chines are on the user’s local area network. It is a simple
proxying scheme that works entirely at user level. The pri-
mary dependence it has on the virtual machine monitor is
that there must be a mechanism to extract the raw Ethernet
packets sent by the virtual network card, and a mechanism
to inject raw Ethernet packets into the virtual card. The spe-
cific mechanisms we use are packet filters, packet sockets,
and VMWare’s host-only networking interface. In the fol-
lowing, we describe VMWare’s model of networking, how
we build upon it, the interface of VNET, and performance
results in the local and wide area.

We use the following terminology. The User is the owner
of the virtual machines (his VMs) which he accesses using
his Client machine. The user also has a Proxy machine for
networking, although the Proxy and Client can be the same
machine. Each VM runs on a Host, and multiple VMs may
run on each Host. The Local environment of a VM is the
LAN to which its Host it is connected, while the Remote

environment is the LAN to which the Client and the Proxy
are connected.

4.1 VMWare networking

VMWare, in its Workstation and GSX Server variants,
can connect the virtual network interface to the network in
three different ways. To the operating system running in
the virtual machine (the VM), they all look the same. By
themselves, these connection types are not well suited for
use in a wide-area, multi-site environment, as we describe
below.

The simplest connection is “bridged”, meaning that
VMWare uses the physical interface of the Host to directly
emulate the virtual interface in the VM. This emulation is
not visible to programs running on the Host. With a bridged
connection, the VM shows up as another machine on the
Local environment, the LAN of the Host. This creates a
network management problem for the Local environment
(What is this new machine that has suddenly appeared?)
and for the User (Will this machine be given network con-
nectivity? How? What’s its address? Can I route to it?).
Furthermore, if the VM is moved to a Host on a different
network, the problems recur, and new ones rear their ugly
head (Has the address to the VM changed? What about all
its open connections and related state?)

The next form of connection is the host-only connection.
Here, a virtual interface is created on the Host which is con-
nected to the virtual interface in the VM. When brought up
with the appropriate private IP addresses and routes, this
enables programs on the host to talk to programs on the
VM. Because we need to be able to talk to the VM from the
Client and other machines, host-only networking is insuffi-
cient. However, it also has the minimum possible interac-
tion with network administration in the Local environment.

The final form of connection is via network address
translation (NAT), a commonly used technique in border
routers and firewalls [7]. Similar to a host-only connection,
a virtual interface on the Host is connected to the virtual in-
terface on the VM, and appropriate private IP addresses and
routes are assigned. In addition, a daemon running on the
Host receives IP packets on the interface. For each outgoing
TCP connection establishment (SYN), it rewrites the packet
to appear to come from the IP address of the Host’s regular
interface, from some unused port. It records this mapping
from the IP address and port on the VM to the address and
port it assigned. Mappings can also be explicitly added for
incoming TCP connections or UDP traffic. When a packet
arrives on the regular interface for the IP and port, it rewrites
it using the recorded mapping and passes it to the VM. To
the outside world, it simply appears that the Host is gener-
ating ordinary packets. To the VM, it appears as if it has
a direct connection to the Local environment. For our pur-

Host

VM

Proxy
VNET

Client

vmnet0
ethx

ethz “ eth0”

VNET

ethy“ eth0”

Client
LAN IP Network

Ethernet Packet Tunneled
over TCP/SSL Connection

Ethernet Packet
Captured by
Promiscuous
Packet Filter

Ethernet
Packet
Injected

Directly into
VM interface

“Host Only”
Network

(a) Outbound traffic

Host

VM

Proxy
VNET

Client

vmnet0
ethx

ethz “ eth0”

VNET

ethy“ eth0”

Client
LAN IP Network

Ethernet Packet Tunneled
over TCP/SSL Connection

Ethernet
Packet

Captured by
Promiscuous
Packet Filter

Ethernet Packet
Injected Directly
into Client LAN

“Host Only”
Network

(b) Inbound traffic

Figure 1. VNET configuration for a single re-
mote virtual machine. Multiple virtual ma-
chines on the Host are possible, as are multi-
ple hosts. Only a single Proxy is needed, and
it can be the same as the Client. (a) Outbound
traffic, (b) Inbound traffic.

poses, NAT networking is insufficient because it is painful
to make incoming traffic work correctly as the mappings
must be established manually. Furthermore, in some cases
it would be necessary for the IP address of the virtual ma-
chine to change when it is migrated, making it impossible
to maintain connections.

4.2 A bridge with long wires

In essence, VNET provides bridged networking, except
that the VM is bridged to the Remote network, the network
of the Client. VNET consists of a client and a server. The
client is used simply to instruct servers to do work on its
behalf. Each physical machine that can instantiate virtual
machines (a Host) runs a single VNET server. At least one
machine on the user’s network also runs a VNET server.
We refer to this machine as the Proxy. The user’s machine
is referred to as the Client. The Client and the Proxy can be
the same machine. VNET consists of approximately 4000
lines of C++.

Figure 1 helps to illustrate the operation of VNET.
VNET servers are run on the Host and the Proxy and are
connected using a TCP connection that can optionally be
encrypted using SSL. The VNET server running on the Host
opens the Host’s virtual interface in promiscuous mode and
installs a packet filter that matches Ethernet packets whose
source address is that of the VM’s virtual interface. The
VNET server on the Proxy opens the Proxy’s physical in-
terface in promiscuous mode and installs a packet filter that

matches Ethernet packets whose destination address is that
of the VM’s virtual interface or is the Ethernet broadcast
and/or (optionally) multicast addresses. To avoid loops, the
packet must also not have a source address matching the
VM’s address. In each case, the VNET server is using the
Berkeley packet filter interface [26] as implemented in libp-
cap, functionality available on all Unix platforms, as well
as Microsoft Windows.

When the Proxy’s VNET server sees a matching packet,
it serializes it to the TCP connection to the Host’s VNET
server. On receiving the packet, the Proxy’s VNET server
directly injects the packet into the virtual network interface
of the Host (using libnet, which is built on packet sockets,
also available on both Unix and Windows) which causes it
to be delivered to the VM’s virtual network interface. Fig-
ure 1(a) illustrates the path of such outbound traffic. When
the Host’s VNET server sees a matching packet, it serializes
it to the Proxy’s VNET server. The Proxy’s VNET server
in turn directly injects it into the physical network interface
card, which causes it to be sent on the LAN of the Client.
Figure 1(b) illustrates the path of such inbound traffic.

The end-effect of such a VNET Handler is that the VM
appears to be connected to the Remote Ethernet network ex-
actly where the Proxy is connected. A Handler is identified
by the following information:

• IP addresses of the Host and Proxy
• TCP ports on the Host and Proxy used by the VNET servers
• Ethernet devices used on the Host and Proxy
• Ethernet addresses which are proxied. These are typically

the address of the VM and the broadcast address, but a
single handler can support many addresses if needed.

• Roles assigned to the two machines (which is the Host and
which is the Proxy)

A single VNET server can support an arbitrary number of
handlers, and can act in either the Host or Proxy role for
each. Each handler can support multiple addresses. Hence,
for example, the single physical interface on a Proxy could
provide connectivity for many VMs spread over many sites.
Multiple Proxies or multiple interfaces in a single Proxy
could be used to increase bandwidth, up to the limit of the
User’s site’s bandwidth to the broader network.

Because VNET operates at the data link layer, it is agnos-
tic about the network layer, meaning protocols other than IP
can be used. Furthermore, because we keep the MAC ad-
dress of the VM’s virtual Ethernet adaptor and the LAN to
which it appears to be connected fixed for the lifetime of
the VM, migrating the VM does not require any participa-
tion from the VM’s OS, and all connections remain open
after a migration.

A VNET client wishing to establish a handler between
two VNET servers can contact either one. This is conve-
nient, because if only one of the VNET servers is behind
a NAT firewall, it can initiate the handler with an outgoing

Command Description
HELLO passwd version Establish Session
DONE Finish Session
DEVICES? Return available network interfaces
HANDLERS? Return currently running handlers
CLOSE handler Tear down an existing handler
HANDLE remotepasswd Establish a handler

local config (Described in text)
local device
remote config
remote address
remote port
remote device
macaddress+

BEGIN local config Establish a handler
local device (Described in text)
remote config
remote device
macaddress+

Figure 2. VNET interface.

connection through the firewall. If the client is on the same
network as the firewall, VNET then requires only that a sin-
gle port be open on the other site’s firewall. If it is not, then
both sites need to allow a single port through. If the desired
port is not permitted through, there are two options. First,
the VNET servers can be configured to use a common port.
Second, if only SSH connections are possible, VNET’s TCP
connection can be tunneled through SSH.

4.3 Interface

VNET servers are run on the Host and the Proxy. A
VNET client can contact any server to query status or to
instruct it to perform an action on its behalf. The basic pro-
tocol is text-based, making it readily scriptable, and boot-
straps to binary mode when a Handler is established. Op-
tionally, it can be encrypted for security. Figure 2 illustrates
the interface that a VNET Server presents.

Session establishment and teardown: The establish-
ment of session with a VNET server is initiated by a VNET
client or another server using the HELLO command. The
client authenticates by presenting a password or by using an
SSL certificate. Session teardown is initiated by the VNET
client using the DONE command.

Handler establishment and teardown: After a VNET
client has established a session with a VNET server, it can
ask the server to establish a Handler with another server.
This is accomplished using the HANDLE command. As
shown in Figure 2, the arguments to this command are the
parameters that define a Handler as described earlier. Here,
local_config and remote_config refer to the Han-
dler roles. In response to a HANDLE command, the server

will establish a session with the other server in the Handler
pair, authenticating as before. It will then issue a BEGIN
command to inform the other VNET server of its intentions.
If the other server agrees, both servers will bootstrap to a
binary protocol for communicating Ethernet packets. The
Handler will remain in place until one of the servers closes
the TCP connection between them. This can be initiated
by a client using the CLOSE command, directed at either
server.

Status Enquiry: A client can discover a server’s avail-
able network interfaces (DEVICES?) and what Handlers it
is currently participating in (HANDLERS?).

4.4 Performance

Our goal for VNET was to make it easy to convey the
network management problem induced by VMs to the home
network of the user where it can be dealt with using fa-
miliar techniques. However, it is important that VNET’s
overhead not be prohibitively high, certainly not in the wide
area. From the strongest to the weakest goal, VNET’s per-
formance should be

• in line with what the physical network is capable of,
• comparable to other networking solutions that don’t address

the network management problem, and
• sufficient for the applications and scenarios where it is used.

We have found that our implementation meets the later two
goals, and, in many cases, meets the first, strongest goal as
well.

Metrics

Latency and throughput are the most fundamental measures
used to evaluate the performance of networks. The time
for a small transfer is dominated by latency, while that for
a large transfer is dominated by throughput. Interactivity,
which is often dominated by small transfers, suffers if la-
tencies are either high or highly variable [8]. Bulk transfers
suffer if throughput is low. Our measurements were con-
ducted on working days (Monday through Thursday) in the
early morning to eliminate time-of-day effects.

Latency: To measure latency, we used the round-trip
delay of an ICMP echo request/response pair (i.e., ping),
taking samples over hour-long intervals. We computed the
average, minimum, maximum and standard deviation of
these measurements. Here, we report the average and stan-
dard deviation. Notice that this measure of latency is sym-
metric.

Throughput: To measure average throughput, we use
the ttcp program. Ttcp is commonly used to test TCP and
UDP performance in IP networks. Ttcp times the transmis-
sion and reception of data between two systems. We use
a socket buffer size of 64 KBytes and transfer a total of 1

Proxy

100 mbit
Switches

Client

100 mbit
SwitchFirewall 1 Router

Host

100 mbit
Switches

100 mbit
Switch Firewall 2

VM

Local

(a) Local Area Configuration

Proxy

100 mbit
Switches

Client

100 mbit
SwitchFirewall 1 Router

Host
100 mbit
Switch

Router
VM

LocalIP Network
(14 hops via Abilene)

(b) Wide Area Configuration

Figure 3. VNET test configurations for the lo-
cal area (a) and the wide area (b). Local area
is between two labs in the Northwestern CS
Department. Wide Area is between the first
of those labs and a lab at Carnegie Mellon.

GB of data in each test. VNET’s TCP connection also uses
a socket buffer size of 64 KBytes. TCP socket buffer size
can limit performance if it is less than the bandwidth-delay
product of the network path, hence our larger-than-default
buffers. All throughput measurements were performed in
both directions.

Testbeds

Although VNET is targeted primarily for wide-area dis-
tributed computing, we evaluated performance in both a
LAN and a WAN. Because our LAN testbed provides much
lower latency and much higher throughput than our WAN
testbed, it allows us to see the overheads due to VNET more
clearly. The Client, Proxy, and Host machines are 1 GHz
Pentium III machines with Intel Pro/100 adaptors. The vir-
tual machine uses VMware GSX Server 2.5, with 256 MB
of memory, 2 GB virtual disk and RedHat 7.3. The network
driver used is vmxnet.

Our testbeds are illustrated in Figure 3. The LAN and
WAN testbeds are identical up to and including the first
router out from the Client. This portion is our firewalled
lab in the Northwestern CS department. The LAN testbed
then connects, via a router which is under university IT con-
trol (not ours), to another firewalled lab in our department
which is a separate, private IP network. The WAN testbed
instead connects via the same router to the Northwestern
backbone, the Abiline network, the Pittsburgh Supercom-
puting Center, and two administrative levels of the campus
network at Carnegie Mellon, and finally to an lab machine
there. Notice that even a LAN environment can exhibit the
network management problem. It is important to stress that
the only requirement that VNET places on either of these
complex environments is the ability to create a TCP con-
nection between the Host and Proxy in some way.

We measured the latency and throughput of the under-
lying “physical” IP network, VMWare’s virtual networking
options, VNET, and of SSH connections:

• Physical: VNET transfers Ethernet packets over multiple
hops in the underlying network. We measure equivalent
hops, and also end-to-end transfers, excepting the VM.

• Local ↔ Host: Machine on the Host’s LAN to/from
the Host.

• Client ↔ Proxy: Analogous to the first hop for an
outgoing packet in VNET and the last hop for an
incoming packet.

• Host ↔ Proxy: Analogous to the TCP connection
of a Handler, the tunnel between the two VNET
servers.

• Host ↔ Client: End-to-end except for the VM.
• Host ↔ Host: Internal transfer on the Host.

• VMWare: Here we consider the performance of all three of
VMWare’s options, described earlier.

• Host ↔ V M : Host-only networking, which VNET
builds upon.

• Client ↔ V M (Bridged): Bridged networking. This
leaves the network administration problem at the
remote site.

• Client ↔ V M (NAT): NAT-based networking. This
partially solves the network administration problem at
the remote site at the layer 3, but creates an
asymmetry between incoming and outgoing
connections, and does not support VM migration. It’s
close to VNET in that network traffic is routed
through a user-level server.

• VNET: Here we use VNET to project the VM onto the
Client’s network.

• Client ↔ V M (VNET): VNET without SSL
• Client ↔ V M (VNET+SSL): VNET with SSL

• SSH: Here we look at the throughput of an SSH connection
between the Client and the Host to compare with VNET
with SSL.

• Host ↔ Client (SSH)

Discussion

The results of our performance tests are presented in Fig-
ures 4 through 6.

Average latency: Figure 4 shows the average latency in
the LAN (Figure 4(a)) and WAN (Figure 4(b)).

In Figure 4(a), we see that the average latency on the
LAN when using VNET without SSL is 1.742 ms. It is im-
portant to understand exactly what is happening. The Client
is sending an ICMP echo request to the VM. The request is
first intercepted by the Proxy, then sent to the Host, and fi-
nally the Host sends it to the VM (see Figure 3(a)). The
reverse path for the echo reply is similar. These three dis-
tinct pieces have average latencies of 0.345 ms, 0.457 ms,
and 0.276 ms, respectively, on the physical network, which

0.156 0.345 0.457 0.454
0.051

0.276
0.659 0.75

1.742

11.393

VMWare VNETPhysical

0.345

36.993 36.848

0.044 0.189

35.622
37.436 37.535

35.524

VMWare VNETPhysical

(a) Local Area (b) Wide Area

Figure 4. Average latency

0.06 1.105 0.033 0.027 0.013 0.579 0.394 0.089

7.765

116.112

VMWare VNETPhysical

1.105

18.702 17.287

0.011 0.095

4.867

18.484

77.287

40.763

VMWare VNETPhysical

(a) Local Area (b) Wide Area

Figure 5. Standard deviation of latency

11.21 11.19 11.22 11.18 11.05

1.53

6.76

1.85

3.67

VMWare VNETPhysical SSH223.3 26.5 1.97
1.93

1.63

0.72

1.22

0.94

0.4

VMWare VNETPhysical SSH11.2 207.6 27.9

(a) Local Area (b) Wide Area

Figure 6. Bandwidth

totals 1.078 ms. In the LAN, VNET without SSL increases
latency by 0.664 ms, or about 60%. We claim that this is not
prohibitive, especially in absolute terms. Hence we note
that the operation of VNET over LAN does not add pro-
hibitively to the physical latencies. The VMWare NAT op-
tion, which is the closest analog to VNET, except for mov-
ing the network management problem, has about 1/2 of the
latency. When SSL encryption is turned on, VNET latency
grows to 11.393 ms, 10.3 ms and a factor of 10 higher than
what is possible on the (unencrypted) physical network.

In Figure 4(b), we note that the average latency on the
WAN when using VNET without SSL is 37.535 ms and
with SSL encryption is 35.524 ms. If we add up the con-
stituent latencies as done above, we see that the total is
37.527 ms. In other words, VNET with or without SSL has
average latency comparable to what is possible on the phys-
ical network in the WAN. The average latencies seen by
VMWare’s networking options are also roughly the same.
In the wide area, average latency is dominated by the dis-
tance, and we get the benefits of VNET with negligible ad-
ditional cost. This result is very encouraging for the de-
ployment of VNET in the context of grid computing, our
primary purpose for it.

Standard deviation of latency: Figure 5 presents the
standard deviation of latency in the LAN (Figure 5(a)) and
WAN (Figure 5(b)).

In Figure 5(a), we see that the standard deviation of la-
tency using VNET without SSL in the LAN is 7.765 ms,
while SSL increases that to 116.112 ms. Adding constituent
parts only totals 1.717 ms, so VNET has clearly dramat-
ically increased the variability in latency, which is unfor-
tunate for interactive applications. We believe this large
variability is because the TCP connection between VNET
servers inherently trades packet loss for increased delay. For
the physical network, we noticed end-to-end packet loss of
approximately 1%. VNET packet losses were nil. VNET
resends any TCP segment that contains an Ethernet packet
that in turn contains an ICMP request/response. This means
that the ICMP packet eventually gets through, but is now
counted as a high delay packet instead of a lost packet, in-
creasing the standard deviation of latency we measure. A
histogram of the ping times shows that almost all delays are
a multiple of the round-trip time. TCP tunneling was used
to have the option of encrypted traffic. UDP tunneling re-
duces the deviation seen, illustrating that it results from our
specific implementation and not the general design.

In Figure 5(b), we note that the standard deviation of
latency on the WAN when using VNET without SSL is
77.287 ms and with SSL is 40.783 ms. Adding the con-
stituent latencies totals only 19.902 ms, showing that we
have an unexpected overhead factor of 2 to 4. We again sus-
pect high packet loss rates in the underlying network lead to
retransmissions in VNET and hence lower packet loss rates,

but a higher standard deviation of latency. We measured a
7% packet loss rate in the physical network compared to 0%
with VNET. We again noticed that latencies which deviated
from the average did so in multiples of the average latency,
supporting our explanation.

Average Throughput: Figure 6 presents the measure-
ments for the average throughput in the LAN (Figure 6(a))
and WAN (Figure 6(b)).

In Figure 6(a), we see that the average throughput in the
LAN when using VNET without SSL is 6.76 MB/sec and
with SSL drops to 1.85 MB/sec, while the average through-
put for the physical network equivalent is 11.18 MB/sec.
We were somewhat surprised with the VNET numbers. We
expected that we would be very close to the throughput ob-
tained in the physical network, similar to those achieved by
VMWare’s host-only and bridged networking options. In-
stead, our performance is lower than these, but considerably
higher than VMWare’s NAT option.

In the throughput tests, we essentially have one TCP
connection (that used by the ttcps running on the VM and
Client) riding on a second TCP connection (that between
the two VNET servers on Host and Proxy). A packet loss
in the underlying VNET TCP connection will lead to a re-
transmission and delay for the ttcp TCP connection, which
in turn could time out and retransmit itself. On the phys-
ical network there is only ttcp’s TCP. Here, packet losses
might often be detected by the receipt of triple duplicate
acknowledgements followed by fast retransmit. However,
with VNET, more often than not a loss in the underly-
ing TCP connection will lead to a packet loss detection in
ttcp’s TCP connection by the expiration of the retransmis-
sion timer. The difference is that when a packet loss is
detected by timer expiration the TCP connection will en-
ter slow start, dramatically slowing the rate. In contrast, a
triple duplicate acknowledgement does not have the effect
of triggering slow start.

In essence, VNET is tricking ttcp’s TCP connection into
thinking that the round-trip time is highly variable when
what is really occurring is hidden packet losses. In gen-
eral, we suspect that TCP’s congestion control algorithms
are responsible for slowing down the rate and reducing the
average throughput. This situation is somewhat similar to
that of a split TCP connection. A detailed analysis of the
throughput in such a case can be found elsewhere [34]. The
use of encryption with SSL further reduces the throughput.

In Figure 6(b), we note that the average throughput over
the WAN when using VNET without SSL encryption is
1.22 MB/sec and with SSL is 0.94 MB/sec. The average
throughput on the physical network is 1.93 MB/sec. Fur-
ther, we note that the throughput when using VMWare’s
bridged networking option is only slightly higher than the
case where VNET is used (1.63 MB/sec vs. 1.22 MB/sec),
while VMWare NAT is considerably slower. Again, as de-

scribed above, this difference in throughput is probably due
to the overlaying of two TCP connections. Notice, however,
that the difference is much less than that in the LAN as now
there are many more packet losses that in both cases will
be detected by ttcp’s TCP connection by the expiration of
the retransmission timer. Again, the use of encryption with
SSL further reduces the throughput.

We initially thought that our highly variable latencies
(and corresponding lower-than-ideal TCP throughput) in
VNET were due to the priority of the VNET server pro-
cesses. Conceivably, the VNET server could respond
slowly if there were other higher or similar priority pro-
cesses on the Host, Proxy, or both. To test this hypothesis
we tried giving the VNET server processes maximum pri-
ority, but this did not change delays or throughput. Hence,
this hypothesis was incorrect.

We also compared our implementation of encryption us-
ing SSL in the VNET server to SSH’s implementation of
SSL encryption. We used SCP to copy 1 GB of data from
the Host to the Client in both the LAN and the WAN. SCP
uses SSH for data transfer, and uses the same authentication
and provides the same security as SSH. In the LAN case we
found the SCP transfer rate to be 3.67 MB/sec compared
to the 1.85 MB/sec with VNET along with SSL encryption.
This is an indication that our SSL encryption implemen-
tation overhead is not unreasonable. In the WAN the SCP
transfer rate was 0.4 MB/sec compared to 0.94 MB/sec with
VNET with SSL. This further strengthens the claim that our
implementation of encryption in the VNET server is reason-
ably efficient.

Comparing with VMWare NAT: The throughput ob-
tained when using VMWare’s NAT option was 1.53 MB/sec
in the LAN and 0.72 MB/sec in the WAN. This is signifi-
cantly lower than the throughput VNET attains both in the
LAN and WAN (6.76 MB/sec and 1.22 MB/sec, respec-
tively). As described previously in Section 4.1, VMWare’s
NAT is a user-level process, similar in principle to a VNET
server process. That VNET’s performance exceeds that of
VMWare NAT, the closest analog in VMWare to VNET’s
functionality, is very encouraging.

Summary: The following are the main points to take
away from our performance evaluation:

• Beyond the physical network and the VMWare networking
options, VNET gives us the ability to shift the network
management problem to the home network of the client.

• The extra average latency when using VNET deployed over
the LAN is quite low while the overhead over the WAN is
negligible.

• VNET has considerably higher variability in latency than
the physical network. This because it automatically
retransmits lost packets. If the underlying network has a
high loss rate, then this will be reflected as higher latency
variability in VNET. Hence, using VNET, in its current
implementation, produces a trade: higher variability in

latency for zero visible packet loss.
• VNET’s average throughput is lower than that achievable in

the underlying network, although not dramatically so. This
appears to be due to an interaction between two levels of
TCP connections. We are working to fix this.

• VNET’s average throughput is significantly better than that
of the closest analog, both in terms of functionality and
implementation, in VMWare, NAT.

• Using VNET encryption increases average latency and
standard deviation of latency by a factor of about 10
compared to the physical network. Encryption also
decreases throughput. The VNET encryption results are
comparable or faster than those using SSH.

We find that the overheads of VNET, especially in the WAN,
are acceptable given what it does, and we are working to
make them better. Using VNET, we can transport the net-
work management problem induced by VMs back to the
home network of the user, where it can be readily solved,
and we can do so with acceptable performance.

5 Towards an adaptive overlay

We designed and implemented VNET in response to the
network management problems encountered when running
VMs at (potentially multiple) sites where the user has no
administrative connection. However, we have come to be-
lieve strongly that the overlays like it, specifically designed
to support virtual machine computing, have great potential
as the mechanisms for adaptation and for exploiting the spe-
cial features of some networks.

An overlay network has an ideal vantage point to mon-
itor the underlying physical network and the applications
running the VMs. Using this information, it can adapt to
the communication and computation behavior of the VMs,
changing its topology and routing rules, and moving VMs.
Requiring code modifications, extensions, or the use of par-
ticular application frameworks has resulted in limited adop-
tion of adaptive application technologies. Here, adaptation
could be retrofitted with no modifications to the operating
system and applications running in the virtual machine, and
could be completely transparent to the running VMs. Simi-
larly, if the overlay is running on a network that can provide
extended services, such as reservations or light-path setup
and teardown in an optical network, it could use these fea-
tures on behalf of an unmodified operating system and its
applications.

We are now designing a second generation VNET im-
plementation that will support this vision. The second gen-
eration VNET will include support for arbitrary topologies
and routing, network and VM monitoring, and interfaces
for adaptative control of the overlay, including VM migra-
tion, and for using underlying resource reservation mecha-
nisms. In the following, we describe these extensions and
then elaborate on the adaptation problem.

Gvm(VM,VE) virtual machine graph (directed)
vmi in VM virtual machine (VM) (node)
vei,j in VE exists if vmi sends data to vmj (edge)
fixed(vmi,vdk) true if vmi may only be assigned to vdk
comp(vmi) compute rate demand of vmi
size(vmi) size of vmi in bytes
bw(vei,j) bandwidth demand on vei,j
lat(vei,j) latency demand on vei,j

Gvmd(VD,VDE) VM daemon graph (directed)
VM daemons host zero or more VMs

vdi in VD VM Daemon (VMD) (node)
vdei,j in VDE exists if vdi sends data directly to vdj (edge)

dynamic
route(vdi,vdj) path (<vdk>) taken by data sent from vdi to vdj
route(vei,j) dynamic
mcomp(vdi) measured compute rate at vdi
mbw(vdei,j) measured available bandwidth on vdei,j
mlat(vdei,j) measured latency on vdei,j

Gnet (N,E) Network topology graph (directed)
VM Daemons run only on hosts

ni in N router or host
host(ni) true if node is a host
ei,j in E exists if ni sends data to nj (edge)
route(ni,nj) path (<nk>) taken by data sent from vdi to vdj
mbw(ni) backplane bandwidth of a router or network
mbw(ei,j) measured available bandwidth on edge

may not exist
mlat(ei,j) measured latency on edge

may not exist

vmap(vmi) assignment of vmi to appropriate vd
many-to-one, dynamic

vdmap(vdi) assignment of vdi to appropriate host
static

route(vdei,j) route that vdei,j takes in network topology graph

VM
Layer

VMD
Layer

Physical
Layer

Figure 7. Terminology.

5.1 Terminology

Figure 7 serves as a point of reference for the terminol-
ogy we use in describing our design and the problems it
induces. On the left hand side, we can see the three layers:
the virtual machines themselves (VM layer), the virtual ma-
chine daemons that host them (VMD layer), and the phys-
ical network resources on which the VMDs run (Physical
layer). The graph of VM Daemons is the overlay itself. A
VM daemon or VMD is a generalization of a VNET server
that is able to manage VMs and measure their traffic and
the characteristics of the underlying network. The nodes
and edges at the VM layer are mapped to nodes and routes
at the VMD layer. The physical layer is the underlying IP
network itself. The nodes of the VMD layer are mapped
to the end-systems of this network. The right hand side of
Figure 7 shows the symbols we use at each layer and the
mapping between layers. The boldfaced symbols represent
where adaptation and the use of underlying resource mech-
anisms can take place.

The VM layer consists of the individual VMs (vmi ∈
V M) and the communication edges among them (vei,j ∈
V E), represented as a graph (Gvm(V M,V E)). If vmi

sends to vmj , then there is an edge vei,j in V E. The
VM layer is essentially a representation of the demands that
the user’s VMs are placing on the system. bw(vei,j) and
lat(vei,j) are the bandwidth and latency requirements of

communication between vmi and vmj . comp(vmi) is the
computational demand of vmi, while size(vmi) is the total
size of its machine image.

The VMD layer consists of VM daemons (vdi ∈ V D),
and the communication edges among them (vdei,j ∈
V DE), represented as a graph (Gvmd(V D, V DE)). If
vdi sends to vdj , there must be a route (route(vdi, vdj))
between them. A virtual machine vmi is assigned to
a single VMD (vmap(vmi)). Hence, an edge vei,j in
the VM layer corresponds to a route route(vei,j) =
route(vmap(vmi), vmap(vmj)) in the VMD layer. Mul-
tiple VMs may be assigned to a single VMD. At the VMD
layer, we also maintain the measured bandwidth and latency
of edges in the Gvmd, mbw(vdei,j), mlat(vdei,j), and the
computational rate at each node (mcomp(vdi)).

The physical layer consists of the underlying topology,
Gnet(V,E), where the nodes vi ∈ V are the routers
and hosts at the IP layer and ei,j ∈ E are the links.
route(vi, vj) are the routes chosen by the network, and
host(vi) is true if vi is a host. In addition, we may be able
to measure the bandwidth and latency of the elements of a
link (mbw(ei,j), mlat(ei,j)), the backplane bandwidth of
a router (mbw(vi)), and the raw computational power of a
host (mcomp(vi)). Each VMD is assigned to a single host
in the physical layer, and each host has at most a single
VMD. This mapping is via vdmap(vdi). Each edge in the
Gvmd turns into a route route(vdei,j) at the physical layer.

5.2 Supporting arbitrary topologies and routing

Currently, a VMD (VNET server) tunnels Ethernet traf-
fic for a particular address to another VMD over a TCP con-
nection, a relationship we refer to as a handler, as described
in Section 4.2. In principle, multiple handlers can be mul-
tiplexed over a single TCP connection. Hence, the edges
in the VMD graph are simply TCP connections. In such a
configuration, the VMDs supporting a user form an overlay
network with a star topology centered on the proxy machine
on the user’s network. All messages are routed through the
proxy machine.

It is straightforward to see why it is possible to support
arbitrary topologies. Each VMD can effectively behave like
a switch or router, sending an packet that arrives on a TCP
connection to another connection instead of injecting it onto
the local network. Indeed, for Ethernet topologies, we can
simply emulate the Ethernet switch protocols, as in VIO-
LIN [22]. Each Ethernet packet contains a source and des-
tination address. A modern Ethernet switch learns the loca-
tion of Ethernet addresses on its ports based on the source
addresses of traffic it sees. Switches also run a distributed
algorithm that assures that they form a spanning tree topol-
ogy.

Because VNET understands that it is supporting VMs,
it can go beyond simply emulating an IP or Ethernet net-
work, however. For example, hierarchical routing of Eth-
ernet packets is possible because the Ethernet addresses of
the user’s VMs are not chosen by Ethernet card vendors, but
are assigned by VNET.

5.3 Monitoring the VMs and the network

The VMD layer is ideally placed to monitor both the re-
source demands placed by the VMs and the resource sup-
plies offered by the underlying physical network, with min-
imal active participation from either.

Each VMD sees every incoming/outgoing packet
to/from each of the VMs that it is hosting. Given a matrix
representation of Gvm, if the VMD is hosting vmi it knows
the ith row and ith column. Collectively, the VMDs know
all of Gvm, so a reduction could be used to give each one a
full copy of Gvm. Hence, without modifying the OS or any
operating systems, the VMDs can recover the application
topology.

Each VMD is also in a good position to infer
the bandwidth and latency demands for each edge,
bw(vei,j), lat(vei,j), the computational demand of each
VM, comp(vmi), and the total size of each VM image,
size(vmi) corresponding to the VMs that it is hosting.
Again, a reduction would give each VMD a global picture
of the the resource demands. Beyond inference, this infor-
mation could also be provided directly by a developer or

administrator without any modifications to the applications
or operating system.

VMDs transfer packets on behalf of the VMs they host.
An outgoing packet from a VM is routed through it’s host-
ing VMD, then through zero or more transit VMDs, the
host VMD of the destination VM, and finally to the des-
tination VM. When such a message is transfered from vdi

to vdj , the transfer time is a free measurement of the cor-
responding path route(vdei,j) in the underlying network.
From collections of such measurements, the two VMDs can
derive mbw(vdei,j) and mlat(vdei,j) using known tech-
niques [5]. A VMD can also periodically measure the avail-
able compute rate of its host (mcomp(vdi)) using known
techniques [6, 39].

Network monitoring tools such as Remos [5] and
NWS [40] can, in some cases, determine the physical layer
topology and measure its links, paths, and hosts.

5.4 VM assignment problems

Let us define some additional terminology. Each VM
computes at some actual rate:

ComputeRate(vmi)

Each pair of VMs have some actual bandwidth and latency:

PathBW (vmi, vmj) = PathBW (vei,j) =

min
vde∈route(vmap(vmi),vmap(vmj))

mbw(vde)

PathLatency(vmi, vmj) = PathLatency(vei,j) =
∑

vde∈route(vmap(vmi),vmap(vmj))

mlat(vde)

A VMD has an allocated compute rate, which is the sum of
all the rates of VMs mapped to it:

AllocatedComputeRate(vdi) =
∑

vm∈V M :vmap(vm)=vdi

comp(vm)

Similarly, an edge between two VMDs has an allocated
bandwidth:

AllocatedBandwidth(vdei,j) =
∑

ve∈V E:vdei,j∈route(ve)

bw(ve)

The VM assignment problem is to find a vmap function
that meets the following requirements:

• Complete: ∀vm ∈ V M : vmap(vm) exists.
• Compliant: fixed(vmi, vdj) ⇒ vmap(vmi) = vdj

• Computationally feasible:
∀vm ∈ V M : ComputeRate(vm) ≥ comp(vm) and
∀vd ∈ V D : AllocatedComputeRate(vd) ≤
mcomp(vd)

• Communication feasible: ∀ve ∈ V E :
PathLatency(ve) ≤ lat(ve) ∧ PathBW (ve) ≥ bw(ve)
and ∀vde ∈ V DE : AllocatedBW (vde) ≤ mbw(vde)

• Routable: ∀ve ∈ V E : route(ve) exists.

We define four variants of the VM assignment problem.
The first two are offline versions while the second two are
online problems.

Simple offline VM assignment problem: Given Gvm

and its associated functions fixed, comp, size, bw, and
lat, and Gvmd and its associated functions route, mcomp,
mbw, and mlat, choose a vmap that meets the vmap re-
quirements. The VMDs are fixed, as are their overlay topol-
ogy and routing rules. We envision three situations in which
this problem arises. The first is if the user has a private
VMD network and runs a multi-VM application on it. The
problem needs to be solved at program startup, and there-
after whenever the communication patterns have changed
dramatically. The second case is when multiple users can
map their own virtual machines to a shared VMD infras-
tructure. In this situation, the VMs of other users can be
treated as fixed. The problem also occurs if it is the VMD
infrastructure that determines the mapping. In that situation,
the problem can be solved with no VMs fixed whenever a
new set of VMs enters or leaves the system, or periodically.

Complex offline VM assignment problem: Given Gvm

and its associated functions, determine vmap, V DE, and
route such that vmap meets the vmap requirements. Here,
the VMDs are fixed, but their overlay topology and its rout-
ing rules can be chosen to help find a suitable vmap. We
see this problem occurring in two contexts. The first is if
the user has a private VMD network that supports topology
and routing changes. The second is for a shared VMD over-
lay where the VMDs solve the problem collectively over all
running VMs.

Simple online VM assignment problem: Given an
existing Gvm, Gvmd, and their associated functions, an
existing vmap, and a new G′

vm, determine vmap′ =
f(vmap,Gvm, G′

vm) such that it meets the vmap require-
ments.

Complex online VM assignment problem: Given an
existing Gvm, Gvmd, and their associated functions, an
existing vmap, route, and a new G′

vm, determine a new
(vmap′, V DE′, route′) = f(vmap,Gvm, G′

vm) such that
vmap meets the requirements.

5.5 Connected components

The simple online VM assignment problem can be for-
mulated in terms of connected components. The connected
components of a graph are a partitioning of the graph into

subgraphs. A connected component of a directed graph
G = (V,E) is a maximal set of vertices U ⊆ V such that
for every pair of vertices u and v in U , there is a path con-
necting them. Hence two vertices are in the same connected
component if and only if there exists a path between the
vertices. If a graph contains only one connected component
then it is said to be a connected graph.

The directed graph Gvm is a connected graph while the
directed graph Gvmd may or may not be connected. It will
be connected if and only if ∀ vdi ∈ V D there ∃ at least one
vmi ∈ V M such that vmap(vmi) = vdi. Note that since
Gvm is connected, the graph of vd ∈ V D where ∀ vd there
∃ vmap such that vd = vmap(vmi) such that vmi ∈ V M ,
will also be connected.

Given an existing Gvm, Gvmd, and their associated func-
tions, we calculate cost(vdei,j) where

cost(vdei,j) = f(mbw(vdei,j),mlat(vdei,j))∀vdei,j ∈ V DE

cost(vdei,j) is a measure of the network cost value associ-
ated with each edge in the VM daemon graph Gvmd. The
cost value would be an integrated metric, a function of the
measured available bandwidth, mbw(vdei,j), and latency,
lat(vdei,j), on the edges in the VM daemon graph Gvmd.

The VM assignment problem may now be described as:

Input:

• Gvm, Gvmd, and their associated functions
• an existing vmap

• a connected component V DC ⊆ V D such that ∀vdi ∈
V DC there ∃ at least one vmi ∈ V M such that
vmap(vmi) = vdi

• a cost value cost(vdei,j) ∀vdei,j ∈ V DE

Output:

• a connected component V DC ′ ⊆ V D such that ∀vdi ∈
V DC′ there ∃ at least one vmi ∈ V M such that
vmap′(vmi) = vdi and

∑
∀vdi,vdj∈V DC′

cost(vdei,j) is

minimum over the set of all possible connected components

Algorithm:

• Each connected component (V DC, V DC ′, V DC ′′, etc)
represents one particular assignment of vmi ∈ V M to
vdi ∈ V D, i.e. a particular vmap meeting all the vmap

requirements
• So from amongst all such possible connected components

(assignments) we choose that which has the least cost
associated with it, i.e.

∑
∀vdi,vdj∈V DC′

cost(vdei,j) is

minimum over the set of all possible connected components

• This is equivalent to enumerating all the possible connected
components of size | VM | and then choosing the one which
has the least cost associated with it.

5.6 Engineering a VMD overlay

For a VMD infrastructure that supports a single user, it
is sensible to think of solving the VM assignment prob-
lems by exploiting simultaneously the freedom to change
the VMD topology and routes, as well as to move the VMs.
However, if the VMD infrastructure is to be shared among
multiple users, a two stage approach, engineering a sensible
general-purpose VMD topology and then doing dynamic
assignment of VMs to that topology, is likely to be more
sensible.

One approach is to require that the topology of the
VMDs, Gvmd be a mesh or a hypercube. This induces a
network engineering problem, that of finding vdmap such
that the chosen topology behaves close to our expectations
for its type in terms of the bandwidth and latency of the
edges. For both meshes and hypercubes, this means that
each edge should be equal in terms of bandwidth and la-
tency. Given that the underlying overlay has such as simple,
regular topology, we would assign groups of VMs that ex-
hibit a particular topology to partitions of the VMD graph.
For example, it is well known that trees and neighbor pat-
terns can be embedded in hypercubes [24]. If a parallel ap-
plication running across a set of VMs exhibits one of these
patterns, its VMs can be readily (and quickly) assigned to
VMDs.

5.7 Exploiting resource reservations

Some networks support reservations of bandwidth along
paths. For example, various optical networks support light-
path set up, essentially allowing for an arbitrary topology to
be configured. The ODIN software [25] provides an appli-
cation with an API to exploit such networks. However, it is
the onerous task of the programmer to determine the appro-
priate topology and then use the API to configure it. Here,
the VMDs could do the same on behalf of the unmodified
application, since they collectively know Gvm.

Light-path services, as well as traditionally ISP-level
reservations such as DiffServ [28], could also be used to
implement an engineered overlay that is shared by multiple
users, as described previously.

6 Conclusions

A strong case can be made for grid computing using vir-
tual machine monitors or virtual servers. In either case,
the combination of a virtual machine’s need for a net-
work presence and the multi-site, multi-security-domain na-
ture inherent in grid computing creates a challenging dis-
tributed network management problem. We have described
and evaluated a tool, VNET, that addresses this problem

by converting it into the familiar single-site network man-
agement problem. The combination of VNET and simi-
lar virtual network tools and virtual machines present an
opportunity: adaptation and exploitation of resource reser-
vations for existing, unmodified operating systems and ap-
plications. We described this opportunity in depth, point-
ing out specific adaptation problems and interactions with
a specific resource reservation system. We are currently
extending VNET to take advantage of this opportunity.
VNET is publicly available and can be downloaded from
http://plab.cs.northwestern.edu/Virtuoso.

Acknowledgements

We would like to thank David O’Hallaron, Julio Lopez,
and Renato Figueiredo for giving us access to the ma-
chines we used in our wide area performance evaluation,
and Ashish Gupta, Sonia Fahmy, and Dongyan Xu for help-
ful discussions on the overlay aspects of VNET.

References

[1] ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK, F.,
AND MORRIS, R. Resilient overlay networks. In Pro-
ceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP 2001) (2001).

[2] BOLLINGER, S., AND MIDKIFF, S. Heuristic techniques
for processor and link assignment in multicomputers. IEEE
Transactions on Computers 40, 3 (March 1991).

[3] CAMPBELL, A., KOUNAVIS, M., VILLELA, D., VICENTE,
J., MEER, H. D., MIKI, K., AND KALAICHELVAN, K.
Spawning networks. IEEE Network (July/August 1999), 16–
29.

[4] DIKE, J. A user-mode port of the linux kernel. In Proceed-
ings of the USENIX Annual Linux Showcase and Conference
(Atlanta, GA, October 2000).

[5] DINDA, P., GROSS, T., KARRER, R., LOWEKAMP, B.,
MILLER, N., STEENKISTE, P., AND MILLER, N. The archi-
tecture of the remos system. In Proceedings of the 10th IEEE
International Symposium on High Performance Distributed
Computing (HPDC 2001) (August 2001), pp. 252–265.

[6] DINDA, P. A. Online prediction of the running time of tasks.
Cluster Computing 5, 3 (2002). Earlier version appears in
HPDC 2001. Summary in SIGMETRICS 2001.

[7] EGEVANG, K., AND FRANCIS, P. The ip network address
translator (nat). Tech. Rep. RFC 1631, Internet Engineering
Task Force, May 1994.

[8] EMBLEY, D. W., AND NAGY, G. Behavioral aspects of text
editors. ACM Computing Surveys 13, 1 (January 1981), 33–
70.

[9] ENSIM CORPORATION. http://www.ensim.com.

[10] FERGUSON, P., AND HUSTON, G. What is a vpn? Tech.
rep., Cisco Systems, March 1998.

[11] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A
case for grid computing on virtual machines. In Proceed-
ings of the 23rd IEEE Conference on Distributed Computing
(ICDCS 2003 (May 2003), pp. 550–559.

[12] FOSTER, I., KESSELMAN, C., AND TUECKE, S. The
anatomy of the grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applications 15, 3
(2001).

[13] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M.,
AND BONEH, D. Terra: A virtual machine-based platform
for trusted computing. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP 2003) (Oc-
tober 2003).

[14] GLEESON, B., LIN, A., HEINANEN, J., ARMITAGE, G.,
AND MALIS, A. A framework for ip-based virtual private
networks. Tech. Rep. RFC 2764, Internet Engineering Task-
force, February 2000.

[15] HAND, S., HARRIS, T., KOTSOVINOS, E., AND PRATT, I.
Controlling the xenoserver open platform. In Proceedings of
OPENARCH 2003 (April 2003).

[16] HUA CHU, Y., RAO, S., SHESHAN, S., AND ZHANG, H.
Enabling conferencing applications on the internet using an
overlay multicast architecture. In Proceedings of ACM SIG-
COMM 2001 (2001).

[17] IBM CORPORATION. White paper: S/390 virtual image fa-
cility for linux, guide and reference. GC24-5930-03, Feb
2001.

[18] IEEE 802.1Q WORKING GROUP. 802.1q: Virtual lans.
Tech. rep., IEEE, 2001.

[19] ITALIANO, G., RASTOGI, R., AND YENER, B. Restoration
algorithms for virtual private networks in the hose model. In
Procedings of IEEE INFOCOM 2002 (June 2002).

[20] JANNOTTI, J., GIFFORD, D., JOHNSON, K., KAASHOEK,
M., AND JR., J. O. Overcast: Reliable multicasting with
an overlay network. In Proceedings of OSDI 2000 (October
2000).

[21] JIANG, X., AND XU, D. Soda: A service-on-demand archi-
tecture for application service hosting platforms. In Proceed-
ings of the 12th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC 2003) (June 2003),
pp. 174–183.

[22] JIANG, X., AND XU, D. Violin: Virtual internetworking on
overlay infrastructure. Tech. Rep. CSD TR 03-027, Depart-
ment of Computer Sciences, Purdue University, July 2003.

[23] KWONG, K., AND ISHFAQ, A. Benchmarking and com-
parison of the task graph scheduling algorithms. Journal of
Parallel and Distributed Computing 59, 3 (1999), 381–422.

[24] LEIGHTON, T. Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes. Morgan Kaufmann,
1992.

[25] MAMBRETTI, J., WEINBERGER, J., CHEN, J., BACON, E.,
YEH, F., LILLETHUN, D., GROSSMAN, B., GU, Y., AND

MAZZUCO, M. The photonic terastream: Enabling next gen-
eration applications through intelligent optical networking at

igrid2002. Future Generation Computer Systems 19, 6 (Au-
gust 2003), 897–908.

[26] MCCANNE, S., AND JACOBSON, V. The BSD packet filter:
A new architecture for user-level packet capture. In Prodeed-
ings of USENIX 1993 (1993), pp. 259–270.

[27] MICROSOFT CORPORATION. Virtual server beta release.

[28] NICHOLS, K., BLAKE, S., BAKER, F., AND BLACK, D.
Definition of the differentiated services field (ds field) in the
ipv4 and ipv6 headers. Tech. rep., Internet Engineering Task
Force, 1998.

[29] RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R.,
AND HOPPER, A. Virtual network computing. IEEE Internet
Computing 2, 1 (January/February 1998).

[30] SAPUNTZAKIS, C., BRUMLEY, D., CHANDRA, R., ZEL-
DOVICH, N., CHOW, J., LAM, M. S., AND ROSENBLUM,
M. Virtual appliances for deploying and maintaining soft-
ware. In Proceedings of the 17th Large Installation Systems
Administration Conference (LISA 2003) (October 2003).

[31] SAPUNTZAKIS, C. P., CHANDRA, R., PFAFF, B., CHOW,
J., LAM, M. S., AND ROSENBLUM:, M. Optimizing the
migration of virtual computers. In Proceedings of the 5th
Symposium on Operating Systems Design and Implementa-
tion (OSDI 2002) (December 2002).

[32] SHI, S., AND TURNER, J. Routing in Overlay Multicast
Networks. In Proceedings of IEEE INFOCOM 2002 (June
2002).

[33] SUGERMAN, J., VENKITACHALAN, G., AND LIM, B.-H.
Virtualizing I/O devices on VMware workstation’s hosted
virtual machine monitor. In Proceedings of the USENIX An-
nual Technical Conference (June 2001).

[34] SUNDARARAJ, A. I., AND DUCHAMP, D. Analytical char-
acterization of the throughput of a split tcp connection. Tech.
rep., Department of Computer Science, Stevens Institute of
Technology, 2003.

[35] TOWNSLEY, W., VALENCIA, A., RUBENS, A., PALL, G.,
ZORN, G., AND PALTER, B. Layer two tunneling proto-
col “l2tp”. Tech. Rep. RFC 2661, Internet Engineering Task
Force, August 1999.

[36] VIRTUOZZO CORPORATION. http://www.swsoft.com.

[37] VMWARE CORPORATION. http://www.vmware.com.

[38] WHITAKER, A., SHAW, M., AND GRIBBLE, S. Scale and
performance in the denali isolation kernel. In Proceedings
of the Fifth Symposium on Operating System Design and Im-
plementation (OSDI 2002) (December 2002).

[39] WOLSKI, R., SPRING, N., AND HAYES, J. Predict-
ing the CPU availability of time-shared unix systems. In
Proceedings of the Eighth IEEE Symposium on High Per-
formance Distributed Computing HPDC99 (August 1999),
IEEE, pp. 105–112. Earlier version available as UCSD Tech-
nical Report Number CS98-602.

[40] WOLSKI, R., SPRING, N. T., AND HAYES, J. The net-
work weather service: A distributed resource performance
forecasting system. Journal of Future Generation Comput-
ing Systems (1999). To appear. A version is also available as
UC-San Diego technical report number TR-CS98-599.

