
Dynamic Topology Adaptation of
Virtual Networks of Virtual Machines

Ananth I. Sundararaj Ashish Gupta Peter A. Dinda
{ais, ashish, pdinda}@cs.northwestern.edu

Department of Computer Science, Northwestern University

ABSTRACT
Virtual machine grid computing greatly simplifies the use of
widespread computing resources by lowering the level of ab-
straction, benefiting both resource providers and users. For
the user, the Virtuoso middleware that we are developing
closely emulates the existing process of buying, configuring
and using machines. VNET, a component of Virtuoso, is
a simple and efficient layer two virtual network tool that
makes these virtual machines appear to be connected to the
home network of the user, simplifying network management.
Overlays like VNET have great potential as the mechanism
for adaptation. Here, we describe our second generation
VNET implementation, which includes support for arbitrary
topologies and routing, application topology inference, and
adaptive control of the overlay. We demonstrate that the
performance of unmodified applications, in particular bulk
synchronous parallel applications running inside the virtual
machines and serviced by VNET, can be significantly (up to
a factor of two) enhanced by adapting the VNET topology
and forwarding rules on the fly based on intelligent appli-
cation traffic inference methods. The adaptation scheme
requires no knowledge or participation from the user or ap-
plication developer.

1. INTRODUCTION
Virtual machines can greatly simplify grid and distributed
computing by lowering the level of abstraction from tradi-
tional units of work, such as jobs, processes, or RPC calls
to that of a raw machine. This abstraction makes resource
management easier from the perspective of resource providers
and results in lower complexity and greater flexibility for
resource users. A virtual machine image that includes pre-

Effort sponsored by the National Science Foundation un-
der Grants ANI-0093221, ACI-0112891, ANI-0301108, EIA-
0130869, EIA-0224449, and a gift from VMWare. Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation
(NSF).

installed versions of the correct operating system, libraries,
middleware and applications can make the deployment of
new software far simpler. We have made a detailed case for
grid computing on virtual machines in a previous paper [2].
We are developing a middleware system, Virtuoso, for vir-
tual machine grid computing [10].

Grid computing is intrinsically about using multiple sites,
with different network management and security philoso-
phies, often spread over the wide area [3]. Running a virtual
machine on a remote site is equivalent to visiting the site
and connecting a new machine. The nature of the network
presence (active Ethernet port, traffic not blocked, routable
IP address, forwarding of its packets through firewalls, etc.)
the machine gets, or whether it gets a presence at all, de-
pends completely on the policy of the site. The impact of
this variation is further exacerbated as the number of sites
is increased, and if we permit virtual machines to migrate
from site to site.

To deal with this network management problem in Virtuoso,
we developed VNET [12], a simple layer 2 virtual network
tool. Using VNET, virtual machines have no network pres-
ence at all on a remote site. Instead, VNET provides a
mechanism to project their virtual network cards onto an-
other network, which also moves the network management
problem from one network to another. Because the virtual
network is a layer 2 network, a machine can be migrated
from site to site without changing its presence—it always
keeps the same IP address, routes, etc. VNET is publicly
available.1

An application running in some distributed computing envi-
ronment, whether virtualized or not, must adapt to the (pos-
sibly changing) available computational and networking re-
sources. Despite many efforts [15, 9, 6, 11, 1, 7], adaptation
mechanisms and control have remained very application-
specific. We are testing the proposition that adaptation us-
ing the application-independent capabilities made possible
by virtual machines interconnected with a virtual network
is effective. This paper provides initial evidence that the
proposition is true. We are now determining the extent of
applications for which it is true.

Custom adaptation by either the user or the resource provider
is exceedingly complex as the application requirements, com-
putational and network resources can vary over time. VNET

1virtuoso.cs.northwestern.edu

is in an ideal position to

1. measure the traffic load and application topology of
the virtual machines

2. monitor the underlying network

3. adapt the application as measured in step 1. to the
network as measured in step 2. by relocating virtual
machines and modifying the virtual network topology
and routing rules

4. take advantage of resource reservation mechanisms in
the underlying network

Best of all, these services can be done on behalf of existing,
unmodified applications and operating systems running in
the virtual machines. A previous paper [12] laid out the
argument and formalized the adaptation problem. Here we
demonstrate adapting the virtual topology and routing rules
to the measured application topology and traffic load.

In the next section, we describe Virtuoso, focusing on the
components used for adaptation. We explain how VNET
has been extended beyond its original implementation [12]
to provide adaptation mechanisms, and we summarize our
earlier results on the virtual topology and traffic inference
framework (VTTIF) [4], which can infer an application’s
topology and traffic load matrix. In Section 3, we describe
how we use VNET and VTTIF together to achieve auto-
matic adaptation. We then report initial experimental re-
sults in Section 4 that show that our adaptation approach
can be effective .

2. VIRTUOSO
We are developing middleware, Virtuoso, for virtual machine
grid computing that for a user very closely emulates the
existing process of buying, configuring, and using an Intel-
based computer or collection of computers from a web site,
a process with which many users and certainly all system
administrators are familiar. Instead of a physical computer,
the user receives a reference to the virtual machine which
he can then use to start, stop, reset, and clone the machine.
The system presents the illusion that the virtual machine is
right next to the user, in terms of console display, devices,
and the network. More details about the current Virtuoso
implementation are available elsewhere [10].

The mechanisms in Virtuoso that are salient to this paper
are VNET, our virtual networking system, and VTTIF, our
application topology and traffic inference framework.

2.1 VNET
VNET is the part of our system that creates and maintains
the networking illusion, that the user’s virtual machines
(VMs) are on the user’s local area network. The specific
mechanisms we use are packet filters, packet sockets, and
VMware’s [13] host-only networking interface. Each physi-
cal machine that can instantiate virtual machines (a host)
runs a single VNET daemon. One machine on the user’s net-
work also runs a VNET daemon. This machine is referred
to as the Proxy.

Host 2
+

VNET

Host 1
+

VNET

Foreign host
LAN 3

Foreign host
LAN 4

User’s
LAN

Foreign host
LAN 1

Proxy
+

VNET

IP network

Host 3
+

VNET
Host 4

+
VNET

Foreign host
LAN 2

VM 1

VM 4
VM 3

VM 2

TCP Connections

Figure 1: VNET startup topology.

Proxy

-

-

Hop
End

-

vmnet1

vmnet1

Interface

-00:50:56:00:21:01-any-

Host1none-00:50:56:00:21:01-

-FF:FF:FF:FF:FF:FF-00:50:56:00:21:01not

Hop
Start

Destination
Address

Destination
Qualifier

Source AddressSource
Qualifier

Source Qualifier : “not” or “-”
Destination Qualifier : “not” or “-”

Source Address : Any valid Ethernet address
Destination Address : Any valid Ethernet address or “None”

Hop Start and Hop End : Physical machines that run VNET daemons
Hop Start – Hop End : TCP connection between those machines

Interface : Interface to which packet has to be injected

For any Ethernet packet multiple rules might be matched at the same time, each
match has a priority value and the rule with the highest priority is used.

The rule that has the destination address as “none” is the default rule. This rule is
always matched as long as the source address matches, but has the lowest
possible priority. The packet would be sent over the TCP connection to the VNET
daemon on the Proxy.

Figure 2: Portion of a routing table stored on the
VNET daemon on a host.

Figure 1 shows a typical startup configuration of VNET for
four hosts, each of which may support multiple VMs. Each
of the VNET daemons running on the foreign hosts is con-
nected by a TCP connection (a VNET link) to the VNET
daemon running on the Proxy. We refer to this as the re-
silient star backbone centered on the Proxy. By resilient,
we mean it will always be possible to at least make these
connections and reestablish them on failure.

The VNET daemons running on the hosts and Proxy open
their virtual interfaces in promiscuous mode using Berke-
ley packet filters [8]. Each VNET daemon has a forward-
ing table, Figure 2 shows one such forwarding table at a
VNET daemon. Each packet captured from the interface
or received on a TCP connection is matched against this
forwarding table to determine where to send it, the possi-
ble choices being sending it over one of its outgoing links
(TCP connections) or writing it out to one of its local inter-
faces using libnet, which is built on packet sockets, available
on both Unix and Windows. If the packet does not match
any rule then no action is taken. For each packet multi-
ple rules might be matched at the same time. Each match
has a priority value associated with it, calculated dynami-
cally based on the strength of the match. The stronger the

HostHost

vmnet0

Ethernet Packet Tunneled
over TCP/SSL Connection

Ethernet Packet Captured by
Promiscuous Packet Filter

Ethernet Packet
Injected Directly

into VM
interface

“Host Only”
Network

Ethernet Packet is Matched against
the Forwarding Table on that VNET

If a match is found, packet is
forwarded on the link according to the
rule

In this case a match is found and the
forwarding link is the first link

Each successfully matched packet is
also inspected by VTTIF to determine
the local traffic matrix

Ethernet Packet is Matched
against the Forwarding
Table on that VNET

In this case a match has
been found and the
forwarding link is the
destination interface

Hence the Ethernet packet
will be injected into that
interface

First link Second link (to proxy)

Each VNET might have multiple TCP connections
(overlay “links”), one necessarily to the VNET on Proxy
(“second link” in this case) and others optionally to
VNETs on other Hosts (“first link” in this case)

Local traffic matrix as
inferred by VTTIF in VNET

Periodically sent to the
VNET on the Proxy to form
the global traffic matrix

VNET

ethz

VM
“eth0”

VNET

ethy

IP Network

VM
“eth0”

vmnet0

Figure 3: A VNET link.

match, the higher the priority value. For example, a rule
matched with theänyq̈ualifier will have a lower priority than
a rule matched with exact values. The rule with the highest
priority is used. The rule that has the destination address
as n̈onëıs the default rule. This rule is always matched as
long as the source addresses match, but has the lowest pos-
sible priority. If only the default rule is matched then the
packet would be sent over the TCP connection to the VNET
daemon on the Proxy.

Figure 3 helps to illustrate the operation of a VNET link.
Each successfully matched packet is also passed to VTTIF to
determine the local traffic matrix. Each VNET daemon pe-
riodically sends its inferred local traffic matrix to the VNET
daemon on the Proxy. The Proxy, through its physical in-
terface, provides a network presence for all the VMs on the
user’s LAN and makes their configuration a responsibility of
the user.

The first generation of VNET was limited solely to this star
topology [12], thus all traffic among the users’ VMs would
be forwarded through the central Proxy, resulting in extra
latency and a bandwidth bottleneck. The star would be
used regardless of the application, as its sole goal was to
provide connectivity for the VMs regardless of the security
constraints on the various sites.

The second generation VNET removes this restriction. Now,
the star topology is simply the initial configuration, again
to provide connectivity for the VMs. Additional links and
forwarding rules can be added or removed at any time. This
makes topology adaptation, as we describe in this paper,
possible. Figure 8 shows a VNET configuration that has
been dynamically adapted. The adaptation mechanisms are
described in more detail in Sections 3 and 4.

VNET primitives
A VNET client can connect to any of the VNET daemons
to query status or perform an action. Following are the
primitives made available by VNET.

• Add an overlay link between two VNET daemons.

• Delete an overlay link.

• Add a rule to the forwarding table at a VNET daemon.

• Delete a forwarding rule.

• List the available network interfaces.

• List all the links to and from a VNET daemon.

• List all the forwarding rules at a VNET daemon.

• Set an upper bound on VNET configuration time.

The primitives generally execute in about 20 ms, including
client time. On initial startup VNET can calculate an up-
per bound on the time taken to configure itself (or change
topology). The last primitive is a means of automatically
passing this value to VTTIF, to be used to determine its
sampling and smoothing intervals.

A language and its tools
Building on the primitives, we have developed a language
for describing the topology and forwarding rules. Figure 4
defines the grammar for the language. The tools we use here
take the form of scripts that generate or parse descriptions
in that language. These tools provide functionality such as:

• Start up a collection of VNET daemons and establish
an initial topology among them.

• Fetch and display the current topology.

• Fetch and display the route a packet will take between
two Ethernet addresses.

• Compute the differences between the current topology
and routing rules and a specified topology and routing
rules.

• Reconfigure the topology and routing rules to match
a specified topology and routing rules.

• Fetch and display the current application topology us-
ing VTTIF (described below).

2.2 VTTIF
The VTTIF component enables topology inference and traf-
fic characterization for applications running inside the VMs
in the Virtuoso system. As described earlier, such inference
is important for automated adaptation where the underlying
network and computational resources can be automatically
adapted to the application’s needs. VNET is ideally placed
to monitor the resource demands of the VMs. In our ear-
lier work [4], we have demonstrated that it is possible to
successfully infer the topology and traffic load matrix of a
bulk synchronous parallel application running in a virtual
machine-based distributed computing environment by ob-
serving the low level traffic sent and received by each VM.

Our system, VTTIF (virtual topology and traffic inference
framework), works by examining each Ethernet packet that
a VNET daemon receives from or delivers to a local VM.

〈program〉 −→ BEGIN 〈host〉 〈config〉END

〈host〉 −→ 〈host〉HOST 〈username〉AT

〈machine〉 〈port〉 〈interface〉
| ε

〈config〉 −→ 〈config〉 〈action〉 〈link〉 〈rules〉 | ε

〈action〉 −→ ADD | DELETE

〈link〉 −→ 〈link〉LINK 〈machine〉 〈machine〉
| ε

〈rules〉 −→ 〈rules〉FORWARD 〈machine〉
〈qualifier〉 〈macaddress〉 〈qualifier〉
〈macaddress〉 〈destination〉 | ε

〈destination〉 −→ 〈machine〉 〈machine〉 | 〈interface〉
〈qualifier〉 −→ NOT | ANY | ε

〈macaddress〉 −→ Ethernet address

such as 01 : 02 : 03 : 04 : 05 : 06

〈machine〉 −→ Machine name

such as machine1

〈username〉 −→ User account on machine

〈port〉 −→ Port where VNET daemon runs

〈interface〉 −→ Ethernet interface

such as eth0

〈at〉 −→ AT

Figure 4: Grammar defining the language for de-
scribing VNET topology and forwarding rules.

VNET daemons collectively aggregate this information pro-
ducing a global traffic matrix for all the VMs in the system,
from which the topology can then be recovered by applying
a simple normalization and pruning algorithm.

We found that we were able to accurately recover many com-
mon topologies from both synthetic and application bench-
marks like the PVM-NAS benchmarks. For example, Fig-
ure 5 shows the topology inferred by VTTIF from the popu-
lar NAS benchmark Integer Sort [14] running on VMs. The
thickness of each link reflects the intensity of communica-
tion along it. VTTIF adds very little overhead to VNET.
Latency is essentially indistinguishable while throughput is
effected on the order of 1%.

Continuous measurement and inference
VTTIF runs continuously, updating its view of the topology
and traffic load matrix among a collection of Ethernet ad-
dresses being supported by VNET. Natural questions arise:
How fast can VTTIF react to topology change? If the topol-
ogy is changing faster than VTTIF can react, will it oscillate
or provide a damped view of the different topologies? How
sensitive is VTTIF to the choice of parameters?

VTTIF is configured by three parameters:

Figure 5: The NAS IS benchmark running on 4 VM
hosts as inferred by VNET-VTTIF.

Figure 6: VTTIF is well damped.

• Update rate: The rate at which local traffic matrix up-
dates are sent from the VNET daemons to the VNET
daemon running on the Proxy.

• Smoothing interval: The window over which the global
traffic matrix on the Proxy is aggregated from the up-
dates received from the other VNET daemons. This
provides a low-passed view of the application’s behav-
ior.

• Detection threshold: The fraction of traffic intensity
on the highest intensity link that must be present on
any other link before it is considered to be a part of
the topology.

The reaction time of VTTIF depends on the rate of updates
from the individual VNET daemons. At fastest, these up-
dates arrive at a rate of 20 Hz. Whether VTTIF reacts to an

Figure 7: VTTIF is largely insensitive to the detec-
tion threshold.

update by declaring that the topology has changed depends
on the smoothing interval and the detection threshold. Af-
ter VTTIF determines that a topology has changed, it will
take some time for it to settle, showing now further topology
changes. The best case settle time that we have measured
on is one second. In other words, it can take as little as one
second for VTTIF to discover a new topology.

Given some configured update rate, smoothing interval, and
detection threshold, there is a maximum rate of topology
change that VTTIF can keep up with. Beyond this rate,
we have designed VTTIF to stop reacting, settling into a
topology that is effectively a union of all the topologies that
are unfolding in the network. Figure 6 shows that VTTIF
is indeed well damped. Here, we are using two separate
topologies and switching rapidly between them. When this
topology change rate exceeds VTTIF’s rate, the reported
change rate settles and declines. The knee of the curve de-
pends on the choice of smoothing interval and update rate,
with the best case being about 1 second. Essentially, up to
this limit, the rate and interval set the knee according to
the Nyquist criterion.

Within limits, VTTIF is largely insensitive to the choice of
detection threshold, as shown in Figure 7. However, this pa-
rameter does determine the extent to which similar topolo-
gies can be distinguished.

3. ADAPTATION
For an application running in some distributed environment
to achieve optimum performance, it must adapt to the (pos-
sibly changing) available computational and networking re-
sources. Adaptation at the level of a collection of virtual
machines connected by a virtual network, as provided by
Virtuoso, presents tremendous opportunities and challenges.
In the ideal case, such adaptation would mean that we could
dynamically optimize, at run-time, the performance of ex-
isting, unmodified applications running on existing, unmod-
ified operating systems without any user or programmer in-
tervention. However, a number of challenges must be over-
come before this vision transcends pollyanna-ism:

Dynamically created ring topology (“fast path links”) amongst the VNETs
hosting the VMs, matching the communication topology of the application
running in the VMs (ring in this case) as infered by VTTIF

Foreign host
LAN 1

User’s
LAN

Host 2
+

VNET

Proxy
+

VNET

IP network

Host 3
+

VNET

Host 4
+

VNET

Host 1
+

VNET

Foreign host
LAN 3

Foreign host
LAN 4

Foreign host
LAN 2

VM 1

VM 4
VM 3

VM 2

Resilient Star Backbone

Merged
matrix as
inferred by
VTTIF

Figure 8: As the application progresses VNET
adapts its overlay topology to match that of the ap-
plication communication as inferred by VTTIF lead-
ing to an significant improvement in application per-
formance, without any participation from the user.

• We must be able to adequately monitor the network
and hosts from the VNET vantage point. Currently,
we have no evidence on this.

• We must be able to adequately monitor the applica-
tion. We have demonstrated that we can do so for BSP
applications [4].

• We must be able to infer the goals of the applications
(in terms of latency, throughput, etc). If this is infea-
sible, we must make the interface to the programmer
or user to get this information as thin and easy to use
as possible.

• We must show that the limited adaptation mechanisms
available in the virtual environment level (topology
changes, routing changes, virtual machine migration,
and resource reservations) are adequate for adaptation.

Clearly, these challenges are interrelated, and they can prob-
ably be overcome for some subset of conceivable applications
and not for others. We are currently trying to determine
that subset. In the following, we demonstrate that the sub-
set is not empty.

4. EXPERIMENTS
We focus on a specific instance of the challenges described in
Section 3, looking at patterns, a synthetic benchmark that
can be configured with most common communication pat-
terns [4]. We try to minimize the running time of patterns,
instantiated on different numbers of VMs, on different col-
lections of hosts from different clusters and environments.
Our adaption mechanism is to add links (and correspond-
ing forwarding rules) to the VNET topology, guided by the
topology inferred by VTTIF.

Figure 8 illustrates this dynamic adaptation. Here, pat-
terns, configured with neighbor-exchange on a ring applica-
tion topology of four VMs, starts executing with a VNET

0

0.5

1

1.5

2

2.5

3

3.5

S
ec

on
ds

All-t
o-A

ll f
ast

path lin
ksResil

ient

Star

Bus f
ast

path

lin
ks Ring fa

st
path

lin
ks Mesh

 fa
st

path

lin
ks

0.94

1.6

3.23

2.92

2.268

Figure 9: Time to set up the backbone star con-
figuration and to add fast path links for different
(inferred) topologies.

star topology (dotted lines) centered on the Proxy. As pat-
terns continues to execute, VTTIF infers that a ring topol-
ogy exists. In response, VNET adds four links (dark lines)
to form an overlay ring amongst the VNET daemons, thus
matching the application’s topology. If the time taken for
inferring the application topology and adapting the VNET
topology is a small fraction of the application lifetime, the
VMs will spend most of their time executing with an efficient
VNET topology, resulting in a lower running time.

The links that are added form the fast path topology, as they
lead to faster communication between the application com-
ponents. For example, VM1 can now communicate directly
over a TCP connection to VM2, instead of redirecting its
traffic to the VNET on the Proxy. It should be noted that
the resilient star topology is maintained at all times. The
fast path topology and its associated forwarding rules are
modified as needed to improve performance.

4.1 Reaction time
Figure 9 shows the time required to create different VNET
topologies among eight VNET daemons each hosting a single
VM. Here, all the hosts are in single cluster (IBM e1350,
nodes are dual 2.0 GHz Xeons with 1.5 GB RAM running
Red Hat Linux 9.0 and VMWare GSX Server 2.5, connected
by a 100 mbit switched network). The Proxy and the user
are located on a network separated by a metropolitan area
network (MAN). We will refer to this setup as the single
cluster setup. This setup helps emphasize overheads and
eliminate other factors such as wide area latency, etc.

It takes 0.94 seconds to create the resilient star topology
amongst the VNET daemons, including time to add the links
and populate the forwarding tables. It takes a further 1.6
seconds to add all the fast path links and corresponding for-
warding rules for an all-to-all topology. Adding fast path
links for a bus topology takes longer (3.23 seconds), even
though there are fewer links. This is because VNET does
not use hierarchical routing. Eventually, migration of vir-
tual machines will be another adaptation mechanism that

0

10

20

30

40

50

60

70

Time to infer the application topology

Time to adapt VNET to the inferred application topology

S
ec

on
ds

All-to-All Bus Ring Mesh

Different application communication topologies

Figure 10: Time taken to infer the application topol-
ogy, adapt VNET to it and the total application
running time for different application topologies, for
eight VMs on a single cluster.

we will leverage. Since VNET operates at layer 2, virtual
machine migration would punch holes in hierarchical routing
tables. Hence, VNET forwards packets based on a source
and destination address match rather than just the destina-
tion address match, which leads to an increase in the num-
ber of forwarding rules for some topologies such as the bus
topology.

For the single cluster setup with 8 VMs, Figure 10 shows
the time needed to infer and then adapt completely (add all
inferred links) to different application topologies. Inferring
the application topology takes the bulk of the time, on the
order of 60 seconds, slightly varying for different patterns.
The time taken to create the inferred fast path topology is
a small portion of the time, on the order of 2 seconds.

Notice that the inference time is large because of the update
rate, smoothing interval, and threshold settings chosen for
VTTIF. Recall from Section 2.2 that VTTIF can react in as
little as one second if configured to do so. Our results are
conservative in this section.

Also note that while in this section we show a reaction to
a single persistent topology, going from the Proxy star to
the appropriate topology that the application exhibits over
a long period, our adaptation system continually adapts to
any topology changes that occur.

Finally, recall that VTTIF damps its reactions according to
the smoothing interval, as described in Section 2.2. Because
of this, once VNET determines how quickly it can change
topology in the given physical environment, it can set VT-
TIF’s smoothing interval accordingly. Because of the damp-
ing, VTTIF will then not ask VNET to adapt to a topol-

id
ea

l
co

m
pl

et
e

st
ar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0

200

400

600

800

1000

1200

1400

1600

1800

R
un

 T
im

e
(S

ec
on

ds
)

Number of Fast Path Links in Virtual Topology

No Fast Path Topology

Full all-to-all network after
startup measurement
+ reconfiguration cost

Full all-to-all from
beginning of run

Dynamic measurement and
reconfiguration

Figure 11: All-to-all topology with eight VMs, all
on the same cluster.

ogy that is changing too quickly. Instead, it will present a
topology that is a union of the various topologies that are
alternating on the network. Through this interaction, we
make it impossible for our adaptation system to oscillate.

4.2 Benefits
We now study the benefits accrued as a function of the num-
ber of fast path links added. If we add k of the n inferred
links, in decreasing order of traffic intensity, how much do
we reduce the running time of patterns?

We repeated this experiment for the common topologies
shown in Figure 10 for four and eight VM configurations
running on four different environments. In addition to run-
ning all the VMs in a single cluster (Figure 11), as described
above, we also split the VMs between two adjacent clusters
(a second IBM e1350 as described above, connected by a
10 mbit connection via two firewalls and a switch), clus-
ters separated by a metropolitan area campus network (the
e1350 described above and a second cluster of dual 1 GHz
P3 machines, with two firewalls in the path), and a wide
area configuration with machines in our clusters, other IBM
e1350s in DOT2, and a machine at CMU.

Figure 11 gives an example for the single cluster configu-
ration, here running an 8 VM all-to-all. Relying on the
startup VNET configuration the application completes in
about 1700 seconds, the running time comes down to 1400
seconds when the highest priority fast path link is added. It
further reduces to about 1000 seconds when half (14) of the
maximum possible fast path links (28) are added. The run-
ning time is reduced to about 700 seconds when all the fast
path links inferred by VTTIF are added, an improvement of
a factor of two.

Figure 12 illustrates the performance gain as a function of
the number of fast path links for eight hosts in the two
MAN-separated clusters. As before, each host runs a single
VM. Note that although the P3 nodes are slower, patterns

2www.dotresearch.org

id
ea

l

co
m

pl
et

e

st
ar 1 2 3 4 5 6 7

0

100

200

300

400

500

600

700

800

900

R
un

 T
im

e
(S

ec
on

ds
)

Number of Fast Path Links in Virtual Topology

No Fast Path Topology

Full bus network after startup
measurement + reconfiguration cost

Full bus from beginning of run

Dynamic measurement and
reconfiguration

Figure 12: Bus topology with eight VMs, spread
over two clusters over a MAN.

id
ea

l
co

m
pl

et
e

st
ar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0

200

400

600

800

1000

1200

1400

1600

1800

R
un

 T
im

e
(S

ec
on

ds
)

Number of Fast Path Links in Virtual Topology

No Fast Path Topology

Full all-to-all network after startup
measurement + reconfiguration cost

Full all-to-all from
beginning of run

Dynamic measurement and
reconfiguration

Figure 13: All-to-all topology with eight VMs,
spread over a WAN.

is configured solely for communication, and the network ca-
pabilities of the P3 nodes and the Xeon nodes are identical.
Here we show a bus communication topology. This is the
worst performance that we have measured. Note that even
here adaptation provides some gains.

Figure 13 shows performance for 8 VMs, all-to-all, in the
WAN scenario, wherein the hosts are located on different
networks spread over the WAN. Three hosts are located on
a single cluster at Northwestern University, Evanston, two
hosts are on another cluster located on the same campus, an-
other host is located on a third MAN network and finally one
host each is located at the University of Chicago, Chicago
and Carnegie Mellon University (CMU), Pittsburgh. The
Proxy and the user are located on a separate network on
the Northwestern University campus. Again, we see a sig-
nificant performance improvement as more and more fast
path links are added.

Discussion
The results of this section clearly illustrate that it is possi-
ble to use our inference tool, VTTIF, the adaptation mech-
anisms of VNET, and a simple control algorithm to greatly
increase the performance of existing, unmodified applica-
tions running in a VM environment like Virtuoso.

Our adaptation algorithm is currently centralized at the
Proxy and uses global information. We are exploring the
extent to which this limits scalability of our system. It
is important to realize that it is the path of packets and
the location of VMs that will determine the ultimate per-
formance of an application in the common case. However,
an application with a highly dynamic topology may strain
a centralized adaptation algorithm. We are also exploring
distributed adaptation algorithms and the ability for a user
to introduce agents into the system that run his own chosen
adaptation algorithms.

It is a common belief that lowering the level of abstraction
increases performance while increasing complexity. In this
particular case, the rule may not apply. Our abstraction
for the user is identical to his existing model of a group of
machines, but we can increase the performance he sees. In
addition, it is our belief that lowering of the level of ab-
straction also makes adaptation much more straightforward
to accomplish.

5. CONCLUSIONS
We have demonstrated the feasibility of adaptation at the
level of a collection of virtual machines connected by a vir-
tual network and shown that its benefits can be significant.
Specifically, we can, at run-time, infer the communication
topology of a BSP application executing in a set of VMs,
and then change our virtual topology to partially or com-
pletely match, decreasing the application’s execution time.
No modifications to the application or its OS are needed, and
our techniques place no requirements on the two other than
they generate Ethernet packets. We are now studying the
extent of applications for which our approach is effective, in-
cluding examining non-parallel application benchmarks such
as TPC-W [5]. We are also moving ahead to use other adap-
tation mechanisms, namely VM migration and the use of
resource reservation mechanisms in the underlying network.

6. REFERENCES
[1] Arabe, J., Beguelin, A., Lowekamp, B., E. Seligman,

M. S., and Stephan, P. Dome: Parallel programming in a
heterogeneous multi-user environment. Tech. Rep.
CMU-CS-95-137, Carnegie Mellon University, School of
Computer Science, April 1995.

[2] Figueiredo, R., Dinda, P. A., and Fortes, J. A case for
grid computing on virtual machines. In Proceedings of the
23rd International Conference on Distributed Computing
Systems (ICDCS 2003) (May 2003).

[3] Foster, I., Kesselman, C., and Tuecke, S. The anatomy
of the grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applications 15
(2001).

[4] Gupta, A., and Dinda, P. A. Infering the topology and
traffic load of parallel programs running in a virtual
machine environment. In Proceedings of the 10th Workshop
on Job Scheduling Policies for Parallel Program
Processing(JSPPP 2004) (June 2004).

[5] Harold W. Cain, Ravi Rajwar, M. M., and Lipasti,

M. H. An architectural evaluation of java tpc-w. In
Proceedings of the Seventh International Symposium on
High-Performance Computer Architecture (January 2001).

[6] Lopez, J., and O’Hallaron, D. Support for interactive
heavyweight services. In Proceedings of the 10th IEEE
Symposium on High Performance Distributed Computing
HPDC 2001 (2001).

[7] Lowekamp, B., and Beguelin, A. Eco: Efficient collective
operations for communication on heterogeneous networks.
In Proceedings of the 10th International Parallel Processing
Symposium (1996), pp. 399–406.

[8] McCanne, S., and Jacobson, V. The BSD packet filter:
A new architecture for user-level packet capture. In
Prodeedings of USENIX 1993 (1993), pp. 259–270.

[9] Noble, B. D., Satyanarayanan, M., Narayanan, D.,

Tilton, J. E., Flinn, J., and Walker, K. R. Agile
application-aware adaptation for mobility. In Proceedings of
the 16th ACM Symposium on Operating Systems
Principles (1997). To Appear.

[10] Shoykhet, A., Lange, J., and Dinda, P. Virtuoso: A
system for virtual machine marketplaces. Tech. Rep.
NWU-CS-04-39, Department of Computer Science,
Northwestern University, July 2004.

[11] Siegell, B., and Steenkiste, P. Automatic generation of
parallel programs with dynamic load balancing. In
Proceedings of the Third International Symposium on
High-Performance Distributed Computing (August 1994),
pp. 166–175.

[12] Sundararaj, A. I., and Dinda, P. A. Towards virtual
networks for virtual machine grid computing. In
Proceedings of the 3rd USENIX Virtual Machine Research
and Technology Symposium (VM 2004) (May 2004).

[13] VMWare Corporation. http://www.vmware.com.

[14] White, S., Alund, A., and Sunderam, V. S. Performance
of the NAS parallel benchmarks on PVM-Based networks.
Journal of Parallel and Distributed Computing 26, 1
(1995), 61–71.

[15] Zinky, J. A., Bakken, D. E., and Schantz, R. E.

Architectural support for quality of service for CORBA
objects. Theory and Practice of Object Systems 3, 1 (April
1997), 55–73.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

