
Hardness of Approximation and Greedy
Algorithms for the Adaptation Problem in

Virtual Environments
Ananth I. Sundararaj Manan Sanghi John R. Lange Peter A. Dinda

{ais,manan,jarusl,pdinda}@cs.northwestern.edu
Department of Electrical Engineering and Computer Science

Northwestern University

Abstract—
Over the past decade, wide-area distributed computing

has emerged as a powerful computing paradigm. Virtual
machines greatly simplify wide-area distributed computing
by lowering the abstraction to benefit both resource users
and providers. A virtual execution environment consisting
of virtual machines (VMs) interconnected with virtual
networks provides opportunities to dynamically optimize,
at run-time, the performance of existing, unmodified dis-
tributed applications without any user or programmer
intervention. We have formalized the adaptation problem
in virtual execution environments, and shown that it is
NP-hard to both, solve and approximate within a factor of
m1/2−δ for any δ > 0, where m is the number of edges in
the virtual overlay graph. We also designed and evaluated
greedy adaptation algorithms and found them to work well
in practice.

I. INTRODUCTION

We have been developing a middleware system, Virtu-
oso, for virtual machine grid computing that, for a user,
very closely emulates the existing process of buying,
configuring, and using a computer or a collection of
computers from a web site. Instead of a physical com-
puter, the user receives a reference to the virtual machine
which he can then use to start, stop, reset, and clone the
machine.

The nature of the network presence that the virtual
machine receives depends solely on the policies of the
remote site. To deal with this network problem we
developed VNET [2], a simple layer two virtual network
tool. VNET is ideally placed to monitor the resource
demands of the VMs. The VTTIF (Virtual Topology
and Traffic Inference Framework) component of Virtuoso
achieves this [2]. Parts of Virtuoso that are salient to this
work are:

Measurement and inference: This involves (a) mea-
suring the traffic load and communication topology of
applications running inside the virtual machines, (b)
monitoring the underlying network and inferring its
topology, bandwidth and latency characteristics, and (c)
measuring host and VM characteristics such as their size,

compute capacities and demands. In previous work [1]
we have shown how to successfully accomplish these
tasks.

Adaptation mechanisms: A wide variety of adapta-
tion mechanisms are possible in the context of virtual
execution environments, such as (a) VM migration, (b)
overlay topology and routing changes, and (c) network
and CPU resource reservations. These have been de-
scribed previously [2].

Adaptation algorithm: Most importantly, we need an
efficient algorithm that drives the adaptation mechanisms
and is guided by the measured and inferred data.

II. ADAPTATION PROBLEM FORMULATION

We describe a constrained version of the generic
adaptation problem that includes only the routing and
mapping components. VNET monitors the underlying
network and provides a directed VNET topology graph,
G = (H,E), where H are VNET nodes (hosts running
VNET daemons and capable of supporting one or more
VMs) and E are the possible VNET links. Wren (inte-
grated with VNET [1]) provides estimates for the avail-
able bandwidth over each link in the VNET topology
graph. These estimates are described by a bandwidth
capacity function, bw : E →

�
.

We are also given an initial mapping of virtual ma-
chines to hosts, M , which is a set of 3-tuples, Mi =
(vmi,hi,yi), i = 1,2 . . .n, where vmi ∈ VM is the virtual
machine in question, hi ∈H is the host that it is currently
mapped onto and yi ∈{0,1} specifies whether the current
mapping of VM to host can be changed or not. A value
of 0 implies that the VM can be remapped and a value
of 1 implies that it cannot.

VTTIF infers the application communication topology
in order to generate the traffic requirements of the
application, A , which is a set of 3-tuples, Ai = (si,di,bi),
i = 1,2 . . .m, where si is the source VM, di is the
destination VM, bi is the bandwidth demand between
the source destination pair.

The goal is to find an adaptation algorithm that uses
the measured and inferred data and drives the adaptation
mechanisms at hand to improve application throughput.
We wish to find

• a mapping from VMs to hosts, vmap : V M → H,
meeting the specified constraints.

• a routing, R : A → P , where P is the set of all paths
in the graph G = (H,E), i.e. for every 3-tuple,
Ai = (si,di,bi), allocate a path, p

(

vmap(si),vmap(di)
)

,
over the overlay graph, G, meeting the application
demands while satisfying the bandwidth constraints of
the network.

Once the mappings and paths have been decided, each
VNET edge will have a residual capacity, rce, which is
the bandwidth remaining unutilized on that directional
edge. We define rce = bwe −∑e∈R(Ai) bi.

For each mapped path, R(Ai), we define its bottleneck
bandwidth, bb

(

R(Ai)
)

= mine∈R(Ai)

{

rce
}

. The aim of
the adaptation algorithm is to maximize the sum of
residual bottleneck bandwidths over each mapped path.

Problem 1 (Mapping and Routing Problem In Virtual
Execution Environments (MARPVEE))
INPUT:

• A directed graph G = (H,E)
• A function bw : E → �
• A set, VM = (vm1,vm2 . . .vmn), n ∈ N

• A set of ordered 3-tuples
A = {(si,di,bi) | si,di ∈ VM; bi; i = 1, . . . ,m}

• A set of ordered 3-tuples M = {(vmi,hi,yi) | vmi ∈
VM; hi ∈ H; yi ∈ {0,1}; i = 1, . . . ,n}

OUTPUT: vmap : V M → H and R : A → P such that
• hi = vmap(vmi) ∀ Mi = (vmi,hi) ∈ M if yi = 1
• rce ≥ 0, ∀e ∈ E
• ∑m

i=1

(

mine∈R(Ai)

{

rce}
)

, where
rce = (bwe −∑e∈R(Ai) bi), is maximized

III. COMPUTATIONAL COMPLEXITY OF THE

ADAPTATION PROBLEM

Theorem 1: MARPVEED (decision version) is NP-
complete.

The NP-hardness for this problem is established by
reduction from the Edge Disjoint Path Problem (EDPP)
which is shown to be NP-complete.

We also used EDPP to investigate the approximability
of MARPVEE. If m is the number of edges in the virtual
overlay graph we have the following result.

Theorem 2: For any δ > 0, it is NP-hard to approxi-
mate MARPVEE within m1/2−δ unless P=NP.

IV. GREEDY ADAPTATION ALGORITHMS

We have devised two greedy algorithms for mapping
VMs to hosts. One finds all the mappings in a single
pass (GreedyMapOne), while the other takes two passes
over the input data (GreedyMapTwo). We have also
adapted Dijkstra’s shortest path algorithm that now finds

IP network

Illinois, USA
100 Mbit backplane
internal bandwidth 11 MB/sec

0.89

1.58

1.76

Virginia, USA
100 Mbit backplane
internal bandwidth 10 MB/sec

Pittsburgh, USA
Numbers indicate end-to-end available bandwidth
(MB/sec) between the different locations

vm3

vm4vm5

vm2

vm7

vm6

vm8

vm1

0.7 0.98

0.7

0.98

0.59

1.3 0.56

0.75 0.56

0.56 0.56

0.33

An application consisting of two disjoint pieces executing inside of the virtual machines (VMs).
The numbers indicate the bandwidth (MB/sec) demand among the communicating pairs

Physical Topology

Application Topology

Mapping an application topology
onto a physical topology

Fig. 1. Experimental setup.

the widest path for an unsplittable network flow. Since
MARPVEE involves both, mapping and routing network
flows we can first apply the mapping algorithm (either
one) followed by the routing algorithm (GreedyRouting).
Alternatively we can interleave the two.

We implemented an evaluator that was used to cal-
culate the residual bandwidth for multiple test cases.
We evaluated the four algorithm variations in three
different settings, randomly generated topologies using
BRITE, smaller topologies created by hand and a real
world scenario. Figure 1 illustrates our setup. All the
algorithms were found to perform well in most scenarios.
For randomly generated topologies we do not see any
differences between the different variations. However for
the topology created by hand and for the real world
scenario that result in a clustered setting, the one-pass
variation outperforms the two-pass algorithm. Further,
we did not notice in difference between the interleaved
and non-interleaved variations.

V. CONCLUSION

We formalized the adaptation problem that arises in
virtual execution environments environments. We have
shown that the adaptation problem is NP-hard and
proven that it is NP-hard to approximate within a factor
of m1/2−δ for any δ > 0, where m is the number of edges
in the virtual overlay graph. We evaluated a variety of
greedy algorithms and found them to perform well in
practice. We are currently focusing on researching the
feasibility of a single optimization metric that would be
effective for a range of distributed applications.

REFERENCES

[1] A. Gupta, M. Zangrilli, A. I. Sundararaj, A. Huang, P. Dinda, and
B. Lowekamp. Free network measurment for adaptive virtualized
distributed computing. In Proceedings of IPDPS, April 2006. To
Appear.

[2] A. I. Sundararaj, A. Gupta, and P. A. Dinda. Increasing application
performance in virtual environments through run-time inference
and adaptation. In Proceedings of HPDC, July 2005.

