
Effects and Implications of File Size/Service Time
Correlation on Web Server Scheduling Policies

Dong Lu� � Peter Dinda� Yi Qiao� Huanyuan Sheng�

�donglu,pdinda,y-qiao3,h-sheng�@northwestern.edu
�Northwestern University

�Ask Jeeves, Inc.

Abstract

Recently, size-based policies such as SRPT and FSP have
been proposed for scheduling requests in web servers. SRPT
and FSP are superior to policies that ignore request size, such
as PS, in both efficiency and fairness, given heavy-tailed ser-
vice times. However, a central assumption that is usually made
in implementing size-based policies in a web server is that the
service time of a request is strongly correlated with the size
of the file it serves. By collecting web server trace data taken
from the logs of modified Apache web servers, this paper re-
veals that the correlation between service time and file size
can be quite low, and shows how the performance of SRPT
and FSP can be dramatically affected by the weak correla-
tion via trace-driven simulations. In response, we propose
and evaluate domain-based scheduling, a simple technique
that better estimates connection times by making use of the
source IP address of the request. Domain-based scheduling
improves SRPT and FSP performance on web servers, bring-
ing the performance benefits of these scheduling polices even
to those regimes where the correlation between file size and
service time is low.

1 Introduction

In a web server, requests continuously arrive to be
serviced. A request requires a certain service time to be
completed, a time whose components include the CPU,
the disk, and the network path. A request is queued
when it arrives and remains in the system until it is com-
plete, the total time from arrival to completion being the
sojourn time or response time. Scheduling policies de-
termine which requests in the queue are serviced at any
point in time, how much time is spent on each, and what
happens when a new request arrives. Common goals of

Effort sponsored by the National Science Foundation under Grants
ANI-0093221, ACI-0112891, ANI-0301108, EIA-0130869, and EIA-
0224449. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation (NSF).

the scheduling policy are to minimize the mean sojourn
time (response time of the request), the average slow-
down (the ratio of its response time to its size), and to
behave fairly to all requests.

Many policies are possible. First Come First Served
(FCFS) is a non-preemptive policy in which the requests
are run to completion in the order in which they were
received. A more common policy is Processor Shar-
ing (PS), which is preemptive. In PS all requests in the
queue are given an equal share of the web server’s atten-
tion. Generalized Processor Sharing (GPS) generalizes
PS with priorities. Often, FCFS can be combined with
PS or GPS, with FCFS dispatching of requests from the
queue to a pool of processes or threads that are collec-
tively scheduled using PS or GPS. These polices ignore
the service time of the request.

Recently, size-based scheduling policies, those that
incorporate the service time of the request into their
decisions, have been proposed for use in web servers.
Harchol-Balter, et al, have proposed the use of the Short-
est Remaining Processing Time (SRPT) scheduling pol-
icy in web servers [8, 18], showed how to incorporate
it into actual implementations [18], and proved that the
performance gains of SRPT usually do not come at the
expense of large jobs [8]. In other words, SRPT is fair
with heavy-tailed job size distributions. Gong, et al fur-
ther investigated the fairness issues of SRPT through
simulation [16] and proposed two hybrid SRPT schedul-
ing policies [17] to trade off the fairness with perfor-
mance. The Fair Sojourn Protocol (FSP) is a modified
version of SRPT that has been proven to be more ef-
ficient and fair than PS given any arrival sequence and
service time distribution [14].

In the implementation of size-based polices such as
SRPT and FSP on a web server, the service time of the
request is needed. The common assumption is that the
service time is the size of the file being served, as this
is very easy to discover when the request enters the sys-
tem. More broadly, the assumption is that the service
time is strongly correlated to the file size. In this paper,

1



we examine the validity of this assumption, and the im-
pact that the degree of correlation between file size and
service time has on the performance of SRPT and FSP.

To evaluate this impact, we developed a simulator
that can support PS, SRPT, and FSP in both M/G/1/�
and G/G/�/�. The simulator operates on a trace of
request arrivals, which can come either from an aug-
mented Apache [1] web server log, or from a trace gen-
erator. The trace contains the request arrivals, the file
sizes, and the actual service times in microseconds. We
use traces that we have captured on our department-level
web server, and traces captured by others on web caches.

In our earlier work [20], we showed that for the met-
rics of mean response time and slowdown, the perfor-
mance of SRPT and FSP are highly dependent on the
correlation (Pearson’s � [6]) between estimated and ac-
tual job size, and can fall well below that of PS for low�
values. Effective job size estimators are critical to apply-
ing size-based scheduling policies. This paper focuses
on applying size-based scheduling in web servers when
the correlation � between file size and service time is
low. We first study how the performance of the file size-
based policies (SRPT-FS, FSP-FS) diverges from their
ideal versions (SRPT, FSP) as we increase the load on
the web server. We then propose a better estimator and
evaluate it via trace-driven simulations.

We study G/G/�/� in addition to M/G/1/� because
previous research [12, 26] has shown that HTTP arrivals
do not form a Poisson process. HTTP document trans-
missions are not entirely initiated by the user: the HTTP
client will automatically generate a series of additional
requests to download embedded files, thus resulting in
a more bursty process. Previous work [12] pointed out
that the aggregated interarrival times of HTTP requests
can be modeled with a heavy-tailed Weibull distribution.

There has been significant work on the G/G/� queu-
ing model. However, we are aware of no analytical
results on G/G/�/� for SRPT or FSP scheduling in
regimes where interarrival times and service times are
heavy-tailed. Therefore, the work we describe in this
paper is based on measurement and simulation.

Using our infrastructure, and measured and synthe-
sized trace data, we address the following questions:

1 What is the actual degree of correlation between file size
and service time in practice? (Section 2)

2 What is the performance of SRPT, FSP and PS under
typical real workloads? (Section 3)

3 Is there a simple and low-overhead estimator for service
time that would make SRPT and FSP on M/G/1/� and
G/G/�/� perform better? (Section 4)

It is important to point out that our results in addressing
questions 2 and 3 are largely independent of our results
for question 1, and the algorithm we develop in response

Policy Description

PS Processor Sharing
FSP Ideal Fair Sojourn Protocol

(exact service times)
SRPT Ideal Shortest Remaining Processing Time

(exact service times)
FSP-FS File size-based FSP

(file size as service time)
SRPT-FS File size-based SRPT

(file size as service time)
FSP-D Domain-based FSP

(domain-estimated service times)
SRPT-D Domain-based SRPT

(domain-estimated service times)

Figure 1. Scheduling policies.

Model Description

������m Poisson arrival process; Single server;
General service time distribution;
Limited queue capacity �.

����n�m General arrival process (Pareto and Weibull);
General service time distribution;
� servers ; Limited queue capacity �

Figure 2. Queuing models.

to question 3 provides benefits to SRPT and FSP over a
wide range of possible answers to question 1.

Our definition of service time is the time needed to
send all of requested data in the absence of other re-
quests in the system. Our measurements show that the
assumption that file size and service time are strongly
correlated is unwarranted—the correlation is, in fact, of-
ten rather weak. We believe that the reason for this phe-
nomenon is path diversity to different clients. Even if for
every specific request, the service time �� � �����,
where � is the number of bytes in the transfer and �
and � are the latency and bandwidth of the path, every
path will likely have a different � and �. In aggregate,
this will mean that �� will be weakly correlated with � .
Notice that this explanation does not require that the bot-
tleneck for file transfer be the network. Path diversity is
simply a fact of life of a large network.

Our trace-driven simulations show that the perfor-
mance of file size-based SRPT and FSP is strongly af-
fected by the weak correlation between file size and ser-
vice time reflected in our web server traces. In fact, �
is indeed low enough that both file-size based SRPT and
FSP perform worse than PS. The job size distribution,
arrival process and load decide the threshold value of �
that SRPT and FSP need to outperform PS.

These results led us to believe that a better estimator
for service time was needed. We refer to our estimator



as a domain estimator, and the use of our domain-based
estimator with a size-based scheduling policy such as
SRPT or FSP as domain-based scheduling. The basic
idea is to use the high order � bits of the source IP ad-
dress to assign the request to one of �� domains. For
each domain, we estimate the service rate (file size di-
vided by service time) based on all previous completed
transfers to the domain. The service rate is then used to
estimate the service time of a new request based on its
file’s size. Based on our traces, there is a strong correla-
tion between these estimates and the actual service times
that grows with the number of bits � used. In short, by
choosing � appropriately, we can create enough corre-
lation to make SRPT and FSP perform well. Surpris-
ingly, � can be kept relatively small, making the imple-
mentation of domain-based scheduling feasible and fast.
Throughout the paper, we refer to the scheduling poli-
cies as listed in Figure 1, and refer to the queuing models
used as listed in Figure 2.

2 File size and service time

Size-based SRPT scheduling appeared in digital
communication networks research in 1983 [10]. In this
context, the service time was taken to be equal to the
transmission time of a message, which is proportional to
the length of the message stored in the node buffers. A
web server serving static requests appears superficially
similar in that it transmits files to the client. However,
there are differences. First, in the digital communication
network context, the work represented by the service
time is pushing the bits of the message onto the wire,
while for the web server context, the work involves end-
to-end cooperation along an entire shared heterogeneous
path. Although most transfers are likely to be dominated
by the bottleneck bandwidth in the path and the latency
of the path, there are multiple possible bottlenecks along
the path and they can vary with time due to packet losses
and congestion. Second, the disk(s), memory system(s),
and CPU(s) of the web server and the client are also po-
tential bottlenecks. These complexities suggest that the
service time of a request may not be proportional or even
well correlated with the size of the file it serves.

There are several possible definitions for service time
in the web server context. For example, we could fo-
cus on a bottleneck resource on the server, such as the
CPU, and define the service time as the total CPU time
needed to execute the request. Alternatively, we could
treat the CPU, disk, and network link of the server as a
single resource and consider the total non-blocked time
of a request on it. We could also take a holistic view and
consider it the time spent on the bottleneck resource on
the path from server to client. We take the position that

the service time of a request is the time that the combi-
nation of server, client, and network would take to finish
the request given no other requests in the whole end-
to-end system (no load on any server resource). In the
following sections, we use this definition and argue that
our measurement methodology measures it by verifying
that the loads on the resources of the end-to-end system
that we measure are miniscule.

To measure correlation between file size and ser-
vice time we use the correlation coefficient (Pearson’s
�) [6]. To answer the question posed by this sec-
tion, we examine � values for a large trace acquired by
us from a typical web server, as well as 70 traces col-
lected from web cache servers. The main conclusion is
that � can vary considerably from server to server, and
can be quite small. � � �	�� for our web server trace,
while the web caches have � evenly distributed in the
range ��	��
 �	���. In subsequent sections, we use our
web server trace to drive our simulation. However, we
also use synthetically generated traces in which we can
control � directly. While many web server traces are
available, none that we could find record the actual ser-
vice time of the request and thus are not useful for the
purposes of our study.

2.1 Measurement on a typical web server

We modified the code of the Apache log module so
that it records the response time of each request with mi-
crosecond granularity (using the IA32 cycle counter to
measure time). Under extremely low load conditions, as
we document below, this time is equivalent to the service
time according to our definition above.

We deployed the module on our department-level
web site. We collected data from September 15, 2003 to
October 19, 2003. This trace includes approximately 1.5
million HTTP requests, among which less than 2% are
dynamic PHP requests that collectively took less than
1% of the total service time recorded. � 	
% of our
requests and � 		% of the service time in the trace are
for static pages. Hence, our web server is dominated by
static web content. our results are comparable to previ-
ous work [21, 19, 18] that claims static content domi-
nates web traffic. The requests originated from 110 “/8”
IP networks, 7220 “/16” IP networks and 31250 “/24”
IP networks spread over the world. We claim that this
server is typical. However, the conclusions of this paper
are also supported by other measured traces and gener-
ated traces.

The bottleneck resource of a request in this trace is
hardly ever the CPU of the server. The web server is a
dual processor Pentium IV Xeon machine running Red
Hat Linux 7.3. CPU load is defined as the exponentially



y = 0.2349e
-4.1253x

R
2
 = 0.9559

0.00001

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

CPU Load

P
(L

o
ad

>x
)

Figure 3. CCDF of CPU load.

y = 0.0723e -0.0001x

R2 = 0.9855

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 20000 40000 60000 80000 100000

Hard disk read IO in KB/sec

P
(d

is
k 

re
ad

 IO
>x

)

Figure 4. CCDF of storage read I/O.

averaged number of jobs in the run queue of the OS ker-
nel scheduler (the Unix load average), The machine can
serve two CPU intensive applications with full CPU cy-
cles. Figure 3 plots the complementary distribution of
the CPU load during the period of trace collection. This
distribution can be modeled with a exponential distribu-
tion with��

� �		�. Figure 3 shows that the probability
� �
������ � �� is minuscule. The memory system
is also clearly not a bottleneck based on these results as
significant cache stalls would show up as increased load.

The bottleneck resource of a request in this trace is
hardly ever the disk system of the server. The ma-
chine’s file systems reside on a NFS-mounted (over pri-
vate gigabit Ethernet SAN) RAID 5 storage server. Fig-
ure 4 shows the complementary distribution of the stor-
age system reads during the period of the trace. The dis-
tribution can be modeled with a exponential distribution
with �� close to 0.99.

We benchmarked the storage system using Bonnie,
which is a widely used utility that measures the perfor-
mance of Unix file system operations that an application
sees [2]. Bonnie reads and writes a 100 MB file (marked
uncacheable) by character or by block. Both sequen-

Read Write
Char Block WebRead Char Block

23604 1399254 29879 16777 50355

Figure 5. Storage bandwidth, KB/sec.

tial and random access are tested. Random block and
character throughput give us upper and lower bounds
on the performance of file system I/O that Apache sees.
We also wrote our own benchmark (WebRead) to get
a sense of the typical read performance that Apache
sees. WebRead simply reads the files in our access log,
in order, as fast as possible. Not surprisingly, the We-
bRead performance is in between the character read and
block read benchmark given by Bonnie. Bonnie and We-
bRead measurements are shown in Figure 5. From Fig-
ures 4 and 5, it is clear that in our trace encountering
a read throughput exceeding the WebRead throughput
� �	���. No recorded read throughput was larger than
Bonnie’s block read benchmark. Notice also that the
highest throughputs seen are lower than the 125 MB/s
throughput limit of the Ethernet SAN, hence the SAN is
also not a bottleneck.

As it is clear that the CPU, memory, and disk sys-
tems are not bottlenecks, if there is any bottleneck it is
in the network or the client. Based on many earlier mea-
surements of load behavior on clients that indicate their
resources spend much of their time idle [22, 13], it is ex-
tremely unlikely for a client to be the bottleneck. If there
is any bottleneck, it is in the network path to the client,
which agrees with earlier work [24, 18] that showed that
the network is the bottleneck for the web servers serving
mainly static content. Given the low rate of requests,
it is highly likely that a single request would perform
similarly to the requests in our trace. Hence, the high-
resolution response time that we record in the Apache
log is a close approximation of the service time as de-
fined above. Obviously, there are situations where CPU
or disk can become bottlenecks, such as in virtual server
configuration in which one physical server hosts several
web sites, or on a web server that hosts database-based
dynamic web content.

Given the provenance of the trace, we can now use it
to answer our question. Figure 6 (a) is a log-log scatter
plot of file size versus service time. Visually, we can see
hardly any correlation between file size and service time.
File transfer times vary over several orders of magnitude
with same file size. Over the entire 1.5 million requests
in the trace, we find that � is a very weak 0.14.

Within a domain, � is larger. We define precisely
what we mean by a domain and connect it with CIDR in
Section 4. Here, simply consider it as a single network
that may be recursively decomposed into subnetworks.



(a) R=0.14 (b) R=0.25

Figure 6. File size versus service time: (a)
whole trace, (b) selected /16 network.

For example, Figure 6 (b) is a log-log scatter plot of file
size versus service time for requests originating with a
single “/16” IP network, where the network address is 16
bits. � � �	�� for this situation. As the domain grows
smaller (has fewer IP addresses, or more bits represent-
ing its network address), � grows larger. For example,
if we focus on a particular “/24” LAN subnet (24 bit
network address) that is contained within the previous
network, � � �	�	.

We speculate that the reason for this behavior is that
network bandwidth heterogeneity from the server to the
clients of a domain decreases as the size of the domain
decreases. This provides a different, but compatible,
explanation for earlier findings [8] that file size-based
SRPT scheduling can decrease mean sojourn time by a
factor of 3-8 over PS in a LAN for load higher than 0.5,
but can only decrease the mean sojourn time by 25% on
the WAN.

We are actively acquiring additional traces, but this
is difficult because web server modifications are neces-
sary to acquire fine grain service times. Many avail-
able traces, such as those from the Internet Traffic
Archive [3], our institution’s other web servers, and oth-
ers provide only file size, not service time and thus are
unsuitable for our work. We have, however, acquired
many traces from web caches, described next, and built
a trace generator that allows us to control � as well as
the distributions of service time and interarrival time, de-
scribed later.

2.2 Measurement on web caches

We examined 70 sanitized access logs from Squid
web caches, made available through the ircache site [4].
These traces contain actual fine grain service times (not
response times) in addition to file sizes. Internet object
caching stores frequently requested Internet objects (i.e.,
pages, images, and other data) on caches closer to the re-
quester than to the source. Clients can then use a local
cache as an HTTP proxy, reducing access time as well

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Correlation Coefficient between file size and service time

P
[R

>x
]

Figure 7. CCDF of � in web cache traces.

as bandwidth consumption.
Squid is a high-performance proxy caching server for

web clients. Unlike traditional caching software, Squid
handles all requests in a single, non-blocking, I/O-driven
process [5], making it very easy to determine the service
time of a request. Squid is similar to a web server in that
it also accepts HTTP requests and sends back requested
files, but it is different in that the Squid servers form
a overlay network that uses the Internet Cache Proto-
col (ICP) to perform server selection for web clients and
load balancing among the cache servers [28]. A client
sees that it typically receives a reply from the nearest
cache server, while from the Squid cache servers’ points
of view, the Internet is divided into several regions with
each cache server serving requests for a region.

Because a single Squid cache serves clients largely
from one region of the Internet, the bandwidth hetero-
geneity to the clients is likely to be less than that seen by
a web server, which services clients regardless of region.
This, we believe, should lead to larger� being measured
on Squid caches than on web servers. The partitioning
of the network as seen from the web server into domains
that we describe in Section 4 builds on this observation.

While we cannot (and do not) use web cache traces as
proxies for web server traces, it is instructive that � on
the caches is also rather weak. Figure 7 shows a com-
plementary distribution plot of the � values in the 70
traces. The traces were collected from 10 squid web
cache servers over 7 days Each trace contains from 0.1
to 1.1 million requests. The smallest � � �	��, while
the largest � � �	��. The mean is 0.34 with standard
deviation 0.13. Given that we expect that � for web
servers will be lower than � for web caches by the rea-
soning in the previous paragraph, that measured �s on
web caches are low suggests that � on web servers is
likely to be low as well.

In combination with the low � seen on our web



server trace, we believe that we can now answer the
question posed by this section in the negative: The cor-
relation between request file size and service time on
web servers is weak.

3 Correlation and performance

We have seen that request service time on web servers
and caches is not strongly correlated with request file
size. Here, we investigate, via simulation, how this weak
correlation (�) affects the performance of size-based
scheduling policies (SRPT and FSP, where actual ser-
vice time is known a priori, and SRPT-FS and FSP-FS,
where the file size is used as the service time) and com-
pare with a size-oblivious policy (PS). Our metrics are
the mean sojourn time (response time) and mean queue
length. In our earlier work [20], we found that for these
metrics the performance of non-ideal SRPT and FSP
(SRPT-FS and FSP-FS here) is dramatically affected by
�, falling below that of PS for low � values, such as we
encountered in the previous section. Here, we show how
the performance of SRPT-FS and FSP-FS diverge from
the ideal as a function of the load on the web server.

3.1 Simulator

Our simulator supports both M/G/1/� and G/G/�/�
queuing systems. It is driven by a trace in which each
request contains the arrival time, file size, and service
time. In addition to the web server trace described in
the previous section, our simulator can also support syn-
thetic traces with many interarrival time and file size /
service time distributions. The correlation between file
size and service time in a synthetic trace can also be di-
rectly controlled. More detail is available [20].

3.2 Simulation with web server trace

Here we consider the performance of SRPT, SRPT-
FS, FSP, FSP-FS, and PS on the web server trace (� �
�	��) described in Section 2.1. The mean service time
is 1250 microseconds. The scheduling policies are de-
scribed in Figure 1. Note that although our web server
trace represents very low load, here we vary the load in
the system by controlling the arrival process of the re-
quests represented in the trace. We make use of Poisson
arrivals, Pareto arrivals, and Weibull arrivals and control
their mean rate in order to control the load. Load control
is important, because, as we discussed in Section 2.1, the
load captured in the trace is rather low. The time units
are microseconds throughout the rest of the paper. Each
simulation is repeated 20 times.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 0.5 1 1.5 2

Load

M
ea

n
 S

o
jo

u
rn

 T
im

e 
in

 M
ic

ro
se

co
n

d
s

PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 8. Mean sojourn time versus load,
G/G/1/�, Pareto arrivals, web server trace.

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2

Load

M
ea

n
 Q

u
eu

e 
L

en
g

th

PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 9. Mean queue length versus load,
G/G/1/�, Pareto arrivals, web server trace.

First, we consider G/G/1/� (Job interarrival has a
heavy-tailed Pareto distribution, file sizes and service
times as in the trace). Figure 8 shows the mean so-
journ times of different scheduling policies with increas-
ing load, while Figure 9 shows the mean queue length of
different scheduling policies with increasing load on the
queue. In both figures, ideal SRPT and FSP perform
very well and almost identically. However, SRPT-FS
and FSP-FS both perform quite poorly, and their per-
formance diverges dramatically from their ideal perfor-
mance with increasing load. SRPT-FS and FSP-FS per-
form worse than SRPT and FSP in all our simulations.

For a queue with unlimited queue capacity, the mean
sojourn time and queue length tend to be infinity if the
load is over unity, and therefore it is meaningless to
present mean sojourn time and queue length. Our simu-
lator uses a finite queue capacity to better match imple-
mentations. The server will begin to reject jobs when it
is overloaded for some period of time (when the queue
is full). Hence, both mean sojourn time and mean queue



length are meaningful; they represent the behavior of the
server under transient overload.

We have also investigated a Weibull arrival process
and Poisson arrival process, where the interarrival times
of requests in the trace are drawn from a Weibull dis-
tribution and exponential distribution respectively. The
results are similar to those for the Pareto arrival process
shown earlier.

Our simulations show that the performance of SRPT-
FS and FSP-FS, SRPT and FSP where request file size
is used as request service time, is largely affected by the
weak correlation � between file size and service time.
With such weak correlations as in our web server trace
and some of our web cache traces, PS can actually be
preferable to size-based policies. However, our previous
work [20] demonstrates that even small increases in �
can dramatically increase the performance of non-ideal
SRPT and FSP. Hence, we turned to developing a better
estimator of service time.

4 Domain-based scheduling

We have found that request file size and service time
are weakly correlated and that the performance of size-
based scheduling policies are strongly dependent on the
degree of this correlation. Given these results, a natural
question is whether there is a better service time estima-
tor than file size, one whose estimates are more strongly
correlated with actual service time. Such an estimator
must also be lightweight, requiring little work per re-
quest. For this reason, we cannot use active probing
techniques. Instead, we explore the web logs and use
past web requests as our probes.

4.1 Statistical stability of the Internet

Domain-based scheduling relies on the Internet being
statistically stable over periods of time, particularly from
the point of view of the web server. Fortunately, there is
significant evidence that this is the case.

Routing stability: Paxson [25] proposed two metrics
for route stability, prevalence and persistency. Preva-
lence, which is of particular interest to us here, is the
probability of observing a given route over time. If a
route is prevalent, then the observation of it allows us
to predict that it will be used again. Persistency is the
frequency of route changes. The two metrics are not
closely correlated. Paxson’s conclusions are that Inter-
net paths are heavily dominated by a single route, but
that the time periods over which routes persist show
wide variation, ranging from seconds to days. However,
2/3 of the Internet paths Paxson studied had routes that
persisted for days to weeks. Chinoy found that route

changes tend to concentrate at the edges of the network,
not in its “backbone” [11]. Barford, et al measured the
web performance in the wide area network and found
that the routes from/to the client to/from a web servers
was asymmetric, but very stable [9].

Spatial and temporal locality of end-to-end TCP
throughput: Balakrishnan, et al analyzed statistical
models for the observed end-to-end network perfor-
mance based on extensive packet-level traces collected
from the primary web site for the Atlanta Summer
Olympic Games in 1996. They concluded that nearby
Internet hosts often have almost identical distributions
of observed throughput. Although the size of the clus-
ters for which the performance is identical varies as a
function of their location on the Internet, cluster sizes
in the range of 2 to 4 hops work well for many regions.
They also found that end-to-end throughput to hosts of-
ten varied by less than a factor of two over timescales on
the order of many tens of minutes, and that the through-
put was piecewise stationary over timescales of similar
magnitude [7]. Seshan, et al applied these findings in
the development of the Shared Passive Network Perfor-
mance Discovery (SPAND) system [27]. Myers, et al
examined performance from a wide range of clients to
a wide range of servers and found that bandwidth to
the servers and server rankings from the point of view
of a client were remarkably stable over time [23]. Yin
Zhang, et al [29] found that three Internet path proper-
ties, loss rate, delay and TCP throughput show various
degrees of constancy and concluded that one can gener-
ally count on constancy on the time scale of minutes.

4.2 Algorithm

Although the Internet, web servers, and clients form
a highly dynamic system, the stability we pointed out in
the previous section suggests that previous web requests
(the web server’s access log) are a rich history which
can be used to better estimate the service time of a new
request. We assume that after processing a request we
know (1) its file size, (2) the actual service time, and (3)
the IP address of the client. Collecting this information
is simple and efficient. Our goal is to develop an efficient
estimator that uses a history of such requests, combined
with the file size and IP address of the current request to
determine the likely service time of the current request.
The correlation � between the estimated service time
and the actual service time should be higher than the
correlation between file size and actual service time. �
must exceed a threshold in order for SRPT to perform
better than PS, and as � increases, the performance of
SRPT increases.

Classless Inter Domain Routing (CIDR) [15] was



proposed in 1993 as “a strategy for address assignment
of the existing IP address space with a view to conserve
the address space and stem the explosive growth of rout-
ing tables in default-route-free routers”. The CIDR strat-
egy has been widely deployed since 1993. “One major
goal of the CIDR addressing plan is to allocate Internet
address space in such a manner as to allow aggregation
of routing information along topological lines”. Con-
sider a domain, a neighborhood in the network topol-
ogy. The broad use of CIDR implies that routes from
machines in the domain to a server outside the domain
will share many hops. Similarly, the routes from the
server to different machines in the domain will also have
considerable overlap. This also means that the routes
will be likely to share the same bottleneck network link
and therefore have similar throughput to/from the server.
The smaller the domain, the more the sharing.

The aggregation of CIDR is along a hierarchy of
increasingly larger networks and is reflected in IP ad-
dresses. The first � bits of an IP address gives the net-
work of which the address is a part, the first � � � bits
give the broader network that contains the first network,
and so on. We exploit this hierarchy in domain-based
scheduling, the algorithm of which is given below.

1 Use the high order � bits of the client IP address to
classify the clients into �� domains, where the � bits are
treated as the domain address.

2 Aggregate past requests to estimate the service rate (or
representative bandwidth) for each domain. This can be
done with several estimators, but our experiments show
that the estimator �� �

��
��

performs the best. Here ��
is the representative service rate, �� is the sum of the
requested file sizes from the domain, and �� is the sum
of the service times for these requests. Notice that
updating this estimate after a request has been processed
is trivial: simply add the request’s file size and service
time to �� and ��, respectively (two reads, two adds,
two writes). For each domain, we store �� and ��. An
array of these pairs is kept, indexed by the domain
address. The total state size is ���� floating point
numbers.

3 For each incoming client request, the web server first
extracts the domain address, indexes the array and
computes �� for the domain. It then estimates the
request’s service time as ������	�� �


�
��

, where 	� is
the request file size. The estimator requires a logical
shift, two reads, a division, and a multiply. For a request
from a heretofore unobserved domain, which occurs
exactly once per domain, we simply use file size as the
estimate.

4 Apply a size-based scheduling policy such as SRPT
using the estimated service times. We suffix the
scheduling policy with “-D”: SRPT-D, FSP-D.

As we might expect, as domains become smaller (�
gets larger), predictive performance increases, at the cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 1618 20 2224 26 2830 32
Bits used to define a domain

R
 (

co
rr

el
at

io
n

 c
o

ff
ic

ie
n

t 
b

et
w

ee
n

 a
ct

u
al

 s
er

vi
ce

 
ti

m
e 

an
d

 e
st

im
at

ed
 s

er
vi

ce
 t

im
e)

Figure 10.� versus bits � defining domain.

of memory to store the state. Figure 10 shows the rela-
tionship between �, the number of bits used to define a
domain and the correlation� between the actual service
time and estimated service time. The figure is derived
from our web server trace. � jumps to 0.26 with � � �
bits, beyond the threshold at which SRPT begins to per-
form better than PS. Notice that this is a mere 32 do-
mains (state size of 256 bytes with 4 byte floats). After
� � �� bits, there are only very small increases of �,
probably because at this point we have divided the In-
ternet into LANs, where each machine on a LAN shares
a common route to every other machine in the Internet,
and thus shares the same bottlenecks. The maximum �
we were able to achieve was 0.704.

4.3 Performance evaluation

To evaluate domain-based scheduling (SRPT-D and
FSP-D, also see Figure 1), we use the methodology of
Section 3.2. We replay our web trace with Poisson,
Pareto, and Weibull arrivals to control load. We vary �,
the number of high-order bits we use to define a domain.

Figures 11 and 12 show the mean sojourn time and
mean queue length of all the scheduling policies with
heavy-tailed Pareto arrivals as a function of �. Notice
that PS, FSP, SRPT, FSP-FS, and SRPT-FS are flat lines.
PS ignores service time. FSP and SRPT have exact
knowledge of the service times (they represent the ideal
performance of these policies). FSP-FS and SRPT-FS
use file size as a proxy for service time (representing
current practice). Notice that as we increase the number
of bits � used to define a domain, the performance of
SRPT-D and FSP-D first exceeds that of PS and finally
converges to near the ideal performance.

While SRPT-D’s performance increases continu-
ously, with diminishing returns, with increasing �, FSP-
D is rather insensitive until � � �� to �� bits, at which
point its performance jumps dramatically and comes



0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Bits Used to define a Domain

M
ea

n
 S

o
jo

u
rn

 T
im

e

PS

FSP

SRPT

FSP-FS

SRPT-FS

FSP-D

SRPT-D

Figure 11. Mean sojourn time versus � for
web trace, G/G/1/�, Pareto arrivals with
� � �	�� and bounds �
�
 ������, load 0.88.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Bits used to define a domain

M
ea

n
 Q

u
eu

e 
L

en
g

th

PS

FSP

SRPT

FSP-FS

SRPT-FS

FSP-D

SRPT-D

Figure 12. Mean queue length versus � for
web trace, G/G/1/�, Pareto arrivals with
� � �	�� and bounds �
�
 ������, load 0.88.

very close to SRPT-D’s. Since � doesn’t increase much
beyond � � �� bits, as we might expect, the perfor-
mance of SRPT-D and FSP-D plateaus. Similar conclu-
sions can be drown for Poisson arrivals and Heavy-tailed
Weibull arrivals.

Our performance evaluation of SRPT-D and FSP-D
demonstrates that better, practical estimators of service
time are possible and that they can dramatically im-
prove the performance of size-based scheduling policies
on web servers.

5 Conclusions and future work

This paper has made the following contributions.
First, we have (1) demonstrated that the assumption that
file size is a good indicator of service time for web
servers is unwarranted. File size and service time are
only weakly correlated. The implication is that size-
based scheduling policies that use file size, such as

SRPT-FS and FSP-FS are likely to perform worse than
expected. Next, using simulations driven by our web
server trace, we have (2) evaluated the performance of
SRPT-FS and FSP-FS and found that their performance
does indeed degrade dramatically due to the weak cor-
relation reflected in the trace. In response, we (3) pro-
posed, implemented, and evaluated a better service time
estimator that makes use of the hierarchical nature of
routing on the Internet and the history of past requests
available on the web server. We refer to SRPT and FSP
augmented with our domain-based estimator as SRPT-D
and FSP-D. The state size of our estimator is a param-
eter. Finally, we (4) found that, with a small state size,
SRPT-D can outperform PS, and with a practical state
size, SRPT-D can exhibit close to ideal performance.
FSP-D requires a significantly larger state size to per-
form close to its ideal. SRPT reacts very quickly to in-
creasingly accurate service time estimates.

Because the TCP connection (and disk) that a request
uses can block, implementations of size-based schedul-
ing in web servers often use what we call back-filling.
An executing request that becomes blocked is preempted
in favor of a request with a larger number of bytes re-
maining to be handled—it is the non-blocked request
of smallest remaining size that is run, not the smallest
request. Our simulations do not model such a system.
However, as far as we are aware, there are no analytical
results for size-based scheduling with blocking behavior
either, making it quite difficult to validate a simulator.

References

[1] The apache software foundation.
http://www.apache.org/.

[2] Bonnie, a unix file system benchmark.
http://www.textuality.com/bonnie/.

[3] The internet traffic archive. http://ita.ee.lbl.gov/.

[4] The ircache project. http://www.ircache.net/.

[5] The squid web proxy cache project. http://www.squid-
cache.org/.

[6] ALLEN, A. O. Probability, statistics, and queueing the-
ory with computer science applications. Academic press,
Inc., 1990.

[7] BALAKRISHNAN, H., SESHAN, S., STEMM, M., AND

KATZ, R. H. Analyzing Stability in Wide-Area Net-
work Performance. In Proceedings of ACM SIGMET-
RICS (June 1997), pp. 2–12.

[8] BANSAL, N., AND HARCHOL-BALTER, M. Analysis of
SRPT scheduling: investigating unfairness. In Proceed-
ings of SIGMETRICS/Performance (2001), pp. 279–290.

[9] BARFORD, P., AND CROVELLA, M. Measuring web
performance in the wide area. Performance Evaluation
Review 27, 2 (1999), 37–48.



[10] BUX, W. Analysis of a local-area bus system with con-
trolled access. IEEE Transactions on Computers 32, 8
(1983), 760–763.

[11] CHINOY, B. Dynamics of internet routing information.
In Proceedings of SIGCOMM (1993), pp. 45–52.

[12] DENG, S. Empirical model of WWW document arivals
at access links. In Proceedings of the IEEE International
Conference on Communication (June 1996), pp. 1797–
1802.

[13] DINDA, P., AND O’HALLARON, D. An evaluation of
linear models for host load prediction. In 8th IEEE Inter-
national Symposium on High Performance Distributed
Computing (HPDC-8) (1999), pp. 87–96.

[14] FRIEDMAN, E. J., AND HENDERSON, S. G. Fairness
and efficiency in web server protocols. In Proceedings of
SIGMETRICS/Performance (2003), pp. 229–237.

[15] FULLER, V., LI, T., YU, J., AND VARADHAN, K.
(rfc1519) Classless Inter-Domain Routing (CIDR): an
address assignment and aggregation strategy, September
1993.

[16] GONG, M., AND WILLIAMSON, C. Quantifying the
properties of srpt scheduling. In Proceedings of IEEE
MASCOTS (2003), pp. 126–135.

[17] GONG, M., AND WILLIAMSON, C. Simulation evalua-
tion of hybrid srpt scheduling policies. In Proceedings of
IEEE MASCOTS (2004), pp. 355–363.

[18] HARCHOL-BALTER, M., SCHROEDER, B., BANSAL,
N., AND AGRAWAL, M. Size-based scheduling to im-
prove web performance. ACM Transactions on Com-
puter Systems (TOCS) 21, 2 (May 2003), 207–233.

[19] KRISHNAMURTHY, B., AND REXFORD, J. Web Pro-
tocols and Practice: HTTP1.1, Networking Protocols,
Caching, and Traffic Measurements. Addison-Wesley,
2001.

[20] LU, D., SHENG, H., AND DINDA, P. Size-based
scheduling policies with inaccurate scheduling informa-
tion. In Proceedings of IEEE MASCOTS (2004), pp. 31–
38.

[21] MANLEY, S., AND SELTZER, M. Web Facts and Fan-
tasy. In Proceedings of the 1997 Usenix Symposium
on Internet Technologies and Systems (USITS97) (Mon-
terey, CA, 1997), pp. 125–134.

[22] MUTKA, M. W., AND LIVNY, M. The available capac-
ity of a privately owned workstation environment. Per-
formance Evaluation 12, 4 (July 1991), 269–284.

[23] MYERS, A., DINDA, P. A., AND ZHANG, H. Perfor-
mance characteristics of mirror servers on the internet. In
Proceedings of IEEE INFOCOM (1999), pp. 304–312.

[24] PADMANABHAN, V. N., AND SRIPANIDKULCHAI, K.
The case for cooperative networking. In IPTPS (2002),
pp. 178–190.

[25] PAXSON, V. End-to-end routing behavior in the Inter-
net. In Proceedings of the ACM SIGCOMM (New York,
August 1996), ACM Press, pp. 25–38.

[26] PAXSON, V., AND FLOYD, S. Wide area traffic: the
failure of Poisson modeling. IEEE/ACM Transactions
on Networking 3, 3 (1995), 226–244.

[27] SESHAN, S., STEMM, M., AND KATZ, R. H. SPAND:
Shared passive network performance discovery. In Pro-
ceedings of the USENIX Symposium on Internet Tech-
nologies and Systems (1997), pp. 135–146.

[28] WESSELS, D., AND CLAFFY, K. ICP and the Squid Web
cache. IEEE Journal on Selected Areas in Communica-
tion 16, 3 (1998), 345–357.

[29] ZHANG, Y., DU, N., PAXSON, V., AND SHENKER, S.
On the constancy of internet path properties. In Pro-
ceedings of the ACM SIGCOMM Internet Measurement
Workshop (2001), pp. 197–211.


