The Measured Network Traffic of
Compiler Parallelized Programs

Peter A. Dinda

Northwestern University, Computer Science
http.//www.cs.northwestern.edu/~pdinda

Brad M. Garcia Kwok-Shing Leung

Laurel Networks Magma Design Automation

Original Study Done At Carnegie Mellon University



Overview

* Analysis of packet traces of representative
HPF-like codes running on a shared Ethernet

 Traffic very different from typical models
— Simple packet size+interarrival behaviors
— Correlation between flows
— Periodicity within flows and in aggregate

 Implications for pre/cjiction and QoS models

Current focus

Caveats: Data is old, shared media network
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Why Study Traffic of Parallel Programs?

Networking provisioning
— Source models, Aggregated traffic models

Adaptive applications
— Measurement and prediction
— Network Weather Service, Remos, RPS

» Resource reservation and QoS systems
— Source models, framing QoS requests
— Intserv, ATM

Computational Grids may introduce lots of
such traffic



CMU Fx Compiler

Variant of High Performance Fortran
Both task and data parallelism
Sophisticated communication generation
— Compile-time and run-time

Multiple target platforms

— Custom communication back-ends

 iWarp (original target), Paragon, T3D, T3E, MPI
— PVM, MPI on many platforms

« Alpha/DUX, Sun/Solaris, 1386/Linux, ...

http://www.cs.cmu.edu/~fx 5



Genesis of Communication Patterns

« Para
e Para
« Para

e
e
e

iIn Fx Programs

Array assignment
Loop iteration input and output
prefix and loop merge

 |Inter-task communication
» Tasks can themselves be task or data parallel

« Parallel I1/0O
 Distribution of sequential I/O



Communication Patterns in Study

F1 B0 0 XK

Partition Broadcast

RS

Neighbor

All-to-dl

Tree(upl) Tree(up2) Tree(down 1) Tree(down 2)
Pattern | Kernel | Description
Neighbor | SOR 2D Successive Overrelaxation
All-to-all 2DFFT 2D Data Parallel FFT
Partition T2DFFT | 2D Task Parallel FFT <—
Broadcast | SEQ Sequential I/0
Tree HIST 2D Image Histogram




Beyond Kernels: AIRSHED

Air quality modeling application
— Used Fx model created by app developers

Coupled chemistry and wind simulations on
3D array (layers, species, locations)
Data 1 nput and distribution
Do I=1,h
Pre- processi ng
do j =1,k
Chem stry/vertical transport
Distribution transpose
Hori zontal transport
Distribution transpose

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/gems/www/hpcc.html s



Environment

* Nine DEC 3000/400 workstations

« 21064 at 133 MHz, OSF/1 2.0, DEC’s tcpdump
e Fx 2.2 on PVM 3.3.3, TCP-based communication

* 10 mbps half-duplex shared Ethernet LAN

* Not private: experiments done 4-5 am

Recording Host
(tcpdump) Execution Hosts

3 33333332




Why is this still interesting?
(study was done ~19906)

Compiler and run-time still representative
Communication patterns still common
Hard to do a study like this today

— Modern Ethernet is switched

— Can only see an approximation of the aggregate traffic
(SNMP, Remos) not the actual packets

Artificial synchronization? BSP anyway

Implications for network prediction and QoS
models are important
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Methodology

* Run program, collecting all packets
 Arrival time and size (including all headers)

» Classify packets according to “connections”
* One-way flow of data between machines
 All packets from machine A to machine B
* Includes TCP ACKs for symmetric connection

* Aggregate and per-connection metrics

11



Metrics

Packet size distributions
Packet interarrival time distributions
Average bandwidth consumed

Instantaneous bandwidth consumed
— 10 ms sliding window

— Time and frequency domain (power
spectrum)

Results for 4 node versions of programs
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Packet Size Distributions

Trimodal

« MTU-sized packets
* “leftovers” (n byte message modulo MTU size)
« ACKs for symmetric connection

T2DFFT generates many different sizes

* Run-time communication system uses multiple
PVM pack calls per message

Typical LAN traffic has wide range of sizes

13



Packet Interarrival Time Distribution

* Bursty, but only at only a few timescales
— Most are within a burst: closely spaced
— Few are between bursts: farther apart

* Quite deterministic on-off sources
— Synchronized communication phases in Fx

Typical network source model is
heavy-tailed stochastic on-off
which mix giving self-similarity 14



Long-term Average Bandwidth

KB/s KB/s
Program (Aggregate) (Connection)
SOR 5.6 0.9
2DFFT 754.8 63.2
T2DFFT 607.1 148.6
SEQ 58.3 -
HIST 29.6 -
AIRSHED 32.7 2.7

Resource demands are often quite light

15



SOR: connection, time domain
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The Power Spectrum

* Frequency domain view of signal
* Density of variance as function of frequency
— Power = variance

* Excellent for seeing periodicities

— Periodically appearing feature in the signal turns
into a spike in the power spectrum

17



SOR: connection, power spectrum
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2DFFT: aggregate, power spectrum
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Airshed: aggregate, power spectrum
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Alrshed aggregate, power spectrum
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Airshed: aggregate, power spectrum
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Implications for Network Prediction

* Networks with significant parallel

workloads may be more predictable

» Typical LAN and WAN look like pink noise
« Mixing effects unclear, however

« Source model must be different
* More deterministic, no heavy tails

» Parallel applications appear detectable

23



Implications for QoS Models

« Pattern should be conveyed
« Show traffic correlation along multiple flows

e Source model more deterministic

 Deterministic burst size

» Deterministic burst interval that depends on
proffered bandwidth

* More degrees of freedom to expose

« Number of nodes

 Closer coupling of network’s and app’s
optimization problemss

24



Conclusions and Future Work

Analysis of packet traces of Fx codes running on a
shared Ethernet using 1996 data

Traffic very different from typical models

— Simple packet size+interarrival behaviors

— Correlation between flows

— Periodicity within flows and in aggregate

QoS models should allow and exploit these
differences

Parallel traffic appears more predictable than
common traffic

25



For More
Information

* http://www.cs.northwestern.edu/~pdinda
Resource Prediction System (RPS) Toolkit

 http://www.cs.northwestern.edu/~RPS

Prescience Lab
 http://www.cs.northwestern.edu/~plab

Fx and AIRSHED

 http://www.cs.cmu.edu/~fx

* http://www.cs.cmu.edu/afs/cs.cmu.edu/project/gems/www/hpcc
.html
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SOR: aggregate, time domain
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SOR: a
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2DFFT: connection, freq domain
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T2DFFT: aggregate, freq domain
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T2DFFT: connection, freq domain
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HIST: aggregate, freq domain
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SEQ: aggregate, freq domain
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