Cluster Computing 0 (2001) ?-?

Host Load Prediction Using Linear Models *

Peter A. Dinda

School of Computer Science

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

E-mail: pdinda@cs.cmu.edu

David R. O’Hallaron

School of Computer Science and

Department of Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

E-mail: droh@cs.cmu.edu

This paper evaluates linear models for predicting the Digital Unix five-second host load average from 1 to 30 seconds

into the future. A detailed statistical study of a large number of long, fine grain load traces from a variety of real
machines leads to consideration of the Box-Jenkins models (AR, MA, ARMA, ARIMA), and the ARFIMA models (due
to self-similarity.) We also consider a simple windowed-mean model. The computational requirements of these models

span a wide range, making some more practical than others for incorporation into an online prediction system. We

rigorously evaluate the predictive power of the models by running a large number of randomized testcases on the load

traces and then data-mining their results. The main conclusions are that load is consistently predictable to a very useful

degree, and that the simple, practical models such as AR are sufficient for host load prediction. We recommend AR(16)

models or better for host load prediction. We implement an online host load prediction system around the AR(16) model

and evaluate its overhead, finding that it uses miniscule amounts of CPU time and network bandwidth.

Keywords: host load prediction, performance prediction, linear time series models
AMS Subject classification: Primary 68M14, Secondary 68M20

1. Introduction

Consider an application program that wants to
schedule a compute-bound soft real-time task in a typ-
ical distributed computing environment [8]. By using
mechanisms such as CORBA [25] or Java RMI [29], the
task can be executed on any of the host machines in
the network. Given this freedom, the application can
choose the host on which the task’s deadline is most
likely to be met.

If the application could predict the exact running
* Effort sponsored in part by the Advanced Research Projects

Agency and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-96-1-0287, in part by

the National Science Foundation under Grant CMS-9318163,
and in part by a grant from the Intel Corporation.

time of the task on each of the hosts, choosing a host
would be easy. However, such predictions are unlikely
to be exact due to the dynamic nature of the distributed
system. Each of the hosts is acting independently, its
vendor-supplied operating system scheduling tasks ini-
tiated by other users, paying no special attention to the
The
computational load on each of the hosts can vary dras-

task that the application is trying to schedule.

tically over time.

Because of this dynamic nature, the application’s
predictions of the task’s running time on each of the
hosts have confidence intervals associated with them.
Better predictions lead to smaller confidence intervals,
which makes it easier for the application to choose be-
tween the hosts, or to decide how likely a particular

2 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

testcase -1619784968 from axpfea.psc trace

N
33

---Rysignalvariange.

N

N
- 2]
L L

o
¢

Length of 95% confidence interval (seconds)

By AR(18)

1234567 8 910111213141516171819202122232425
Lead (seconds)

Figure 1. Benefits of prediction: length of 95% confidence interval
for running time of a one second task on an interactive cluster

machine with long term load average of 0.17.

host is to meet the deadline.

The running time of a compute-bound task on a host
is strongly related to the computational load on the
host. If we could predict the load that a task would
encounter on some host, we could predict the running
time on that host. Better load predictions lead to better
predictions of running time and thus to smaller confi-
dence intervals. For this reason, we concentrate on host
load prediction here.

Better load predictions can indeed lead to drastically
smaller confidence intervals on real hosts, even lightly
loaded ones. For example, Figure 1 plots, for one such
host, the length of the confidence interval for the run-
ning time of a one second task as a function of how far
ahead the load predictions are made. The confidence
intervals for a predictive AR(18) model (described in
Section 4) and for the raw variance of the load signal
itself are represented. Notice that for up to 25 seconds
into the future, the AR(18) model provides a confidence
interval of less than 200 ms while the raw load signal
provides a confidence interval of over two seconds.

The existence of clear benefits of this kind motivates
the following questions: Is host load consistently pre-
dictable or are examples like Figure 1 merely flukes?
If host load is indeed consistently predictable, what
classes of predictive models are appropriate for predict-
ing it? What are the differences between these different
classes in terms of their predictive power and their com-
putational overheads? What class can be recommended
for use in a real system? Finally, what is the overhead
of an online host load prediction system that uses an
appropriate model? This paper describes the results of

a large scale, real world study to provide statistically
rigorous answers to the questions of predictability. In
addition, we present measurements of an online host
load prediction system in order to answer the questions
of overhead.

We found that host load is, in fact, consistently pre-
dictable to a very useful degree from past behavior,
and that simple, practical linear time series models are
sufficiently powerful load predictors. These results are
somewhat surprising because load has complex behav-
ior and exhibits properties such as self-similarity and
epochal behavior that suggest that more complex mod-
els would be more appropriate. As far as we are aware,
this is the first study to identify these properties of host
load and then to rigorously evaluate the practical pre-
dictive power of linear time series models that both can
and cannot capture them. Furthermore, our evaluation
approach, while much more computationally intensive
than those of traditional time series analysis, is unbi-
ased and therefore lets us realistically gauge how the
models actually behave when confronted with messy
real world host load measurements. Our study is also
unique in focusing on predictability on the scale of sec-
onds as opposed to minutes or longer time scales, and
thus is perhaps most useful in the context of interac-
tive applications such as scientific visualization tools [1]
running on distributed systems. Finally, our evalua-
tion uses a toolkit for constructing distributed resource
prediction services, RPS [12]. RPS has been used to
build prediction systems for the Remos resource mea-
surement system [23] and for BBN’s QuO distributed
object quality of service system [32].

We began by choosing to measure host load by the
Digital Unix five-second load average. We found that
this measure, which can be easily acquired by user-level
programs, is closely related to the running time of short
compute-bound tasks (Section 2.) We collected a large
number of 1 Hz benchmark load traces, which capture
all the dynamics of the load signal, and subjected them
to a detailed statistical analysis, which we summarize
in Section 3.

On the one hand, this analysis suggested that linear
time series models such as those in the Box-Jenkins [6]
AR, MA, ARMA, and ARIMA classes might be appro-
priate for predicting load. On the other hand, the exis-
tence of self-similarity-induced long-range dependence
suggested that such models might require an impracti-

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models 3

cal number of parameters or that the much more com-
plex ARFIMA model class [20,16,4], which explicitly
captures long-range dependence, might be more appro-
priate. Since it is not obvious which model is best, we
empirically evaluated the predictive power of the AR,
MA, ARMA, ARIMA, and ARFIMA model classes, as
well as that of a simple ad hoc windowed-mean predic-
tor called BM and a long-term mean predictor called
MEAN. BM includes LAST, which predicts that the
last measurement of load will continue in perpetuity,
as a degenerate case. We describe these model classes,
RPS’s implementations of them, and the computational
requirements these implementations in Section 4.

Our evaluation methodology, which we describe in
detail in Section 5, was to run randomized testcases on
the benchmark load traces. The testcases (190,000 in
all, or about 5000 per trace) were randomized with re-
spect to model class, the number of model parameters
and their distribution, the trace subsequence used to fit
the model, and the length of the subsequent trace sub-
sequence used to test the model. We collected a large
number of metrics for each testcase, but we concentrate
on the mean squared (prediction) error metric in this
paper. This metric is directly comparable to the raw
variance in the load signal, and, with a normality as-
sumption, can be translated into a confidence interval
for the running time of a task. Moreover, by the cen-
tral limit theorem, these estimates of a model class’s
expected mean squared error are themselves normally
distributed, and thus we can determine, to a given sig-
nificance level, whether one model provides lower ex-
pected mean squared error than another. Further, we
determined how much the error varies from testcase to
testcase. Finally, we performed paired comparisons be-
tween the expected normalized performance of the AR,
BM, MEAN, and LAST models.

The results of our evaluation are presented in Sec-
tion 6. We found that host load is consistently pre-
Ex-
cept for the MA models, which performed quite badly,

dictable to a useful degree from past behavior.

the expected mean squared error of the predictive mod-
els, computed using the unpaired comparisons, were all
roughly similar, although statistically significant differ-
ences were indeed found. The differences were greater
on more heavily loaded hosts. These marginal differ-
ences do not seem to warrant the use of the more so-
phisticated model classes (ARMA, ARIMA, ARFIMA)

N

(S
L
T

N
o
L

[y
o
L

[uny
o
L

a1
L

Execution TIme (Seconds)

42,000 points
Coefficient of Correlation = 0.998

o
L

1 3 5 7
Measured Load

Figure 2. Relationship between average load during execution

and running time.

because their run-time costs are much higher. However,
the paired comparisons, which are statistically stronger,
illustrate the benefits of AR models over simple ad hoc
models such as BM and LAST. Our recommendation is
to use AR models of relatively high order (16 or better)
for load prediction within the regime we studied.

We constructed a prototype RPS-based online host
load prediction system using the AR(16) model and
measured its overheads (Section 7.) The latency, from
measurement to prediction, of this system is quite low.
At the 1 Hz rate at which we measure host load,
the system consumes nearly unmeasurable amounts of
CPU time and network bandwidth, while its maximum
achievable rate is three orders of magnitude higher than
required. The conclusion is that such systems can not
only provide useful predictions of host load, but can be
made to be practical.

Section 8 puts our study in the context of other work
in the area, and Section 9 summarizes and concludes

with a discussion of future directions of this research.

2. Host load and running time

For CPU-bound tasks, there is an intuitive relation-
ship between host load and running time. Consider Fig-
ure 2, which plots running time versus average load ex-
perienced during execution for tasks consisting of simple
wait loops. The data was generated by running variable
numbers of these tasks together simultaneously, at iden-
tical priority levels, on an otherwise unloaded Digital
Unix machine. Each of these tasks sampled the Unix
five-second load average at roughly one second inter-
vals during their execution and at termination printed

4 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

the average of these samples as well as their running
time. It is these pairs that make up the 42,000 points
in the figure. Notice that the relationship between the
measured load during execution and the running time
is almost perfectly linear (R? > 0.99.)

If load were presented as a continuous signal, we
would summarize this relationship between running
time and load as

tezec
tnowtlezec

tnow

= tnom

1+ -2

tezec

z(t)dt

where t,,, is when the task begins executing, t,om is
the running time of the task on a completely unloaded
machine, z(t) is the continuous “background” load, and
tegec 18 the task’s running time. In practice, we can
only sample the load with some non-infinitesimal sam-
ple period A so we can only approximate the integral
by summing over the values in the sample sequence. In
this paper, A = 1 second, so we will write such a se-
quence of load samples as {z:) = ..., 21, 2t, Zt+1,- - -
We will also refer to such a sequence as a load signal.
If we knew 244y for £ > 0, we could directly com-
pute the running time. Unfortunately, the best we can
do is predict these values in some way. The quality
of these predictions will then determine how tightly we
can bound the running time of our task. We measure
prediction quality by the mean squared error, which is
the average of the square of the difference between pre-
Note that there is a
mean squared error associated with every lead time k.
2) have a different
(and probably higher) mean squared error than one-

dicted values and actual values.
Two-step-ahead predictions (k =

step-ahead predictions (k = 1), and so on.

During some intervals of time, the load signal may
be less predictable than others. Estimates of the mean
squared error for those intervals would be larger than
for other intervals. Because of this variability, care must
be taken in comparing different prediction techniques.
However, if we aggregate the estimates for many differ-
ent intervals, the central limit theorem tells us that the
resulting ezpected mean squared error is normally dis-
tributed, and thus we use this quantity in our compar-
isons. Intuitively, this is the mean squared prediction
error one would expect from a given prediction tech-
nique confronted with a randomly chosen interval.

For the simplest prediction, the long-term mean of
the signal, the mean squared error is simply the variance
of the load signal. As we shall see in Section 3, load is

highly variable and exhibits other complex properties,
which leads to very loose estimates of running time.
The hope is that more sophisticated prediction schemes
will have much lower mean squared errors.

It is important to note that a prediction made with
a linear time series model includes an estimate of its
mean squared errors, as well as an estimate of the co-
variance of the errors. In other words, each prediction
is qualified with an estimate of how erroneous it can be.
These measures of prediction quality provide the basis
of statistical reasoning using the predictions, such as
choosing between two hosts based on their confidence
intervals. Our evaluation is focused on the measured
mean squared error, not on these estimates.

In this paper, we often translate (measured) mean
squared errors into a confidence interval for the running
time of a task. This operation is valid for short tasks
which do not benefit from priority boosts when they
start running. For longer tasks, computing confidence
intervals requires using the covariance estimates as well
as the mean squared errors [10, Chapter 5].

3. Statistical properties of load traces

The load on a Unix system at any given instant is
the number of processes that are running or are ready to
run, which in turn is the length of the ready queue main-
tained by the scheduler. The kernel samples the length
of the ready queue at some rate and then exponentially
averages the samples to produce a load average which
can be accessed from a user program. It is important to
note that while this filtering does tend to correlate the
load average over the short term (shorter than the time
constant of the filter), the exponential-averaging filter
does expose the full spectral content of the underlying
signal.

The Unix we used was Digital Unix (DUX.) DUX
is interesting because the time constant is a mere five
seconds, which minimizes the effect of phantom correla-
tion due to the filter. This is especially important when
While
the analysis of this section and the prediction results

gauging the efficacy of prediction techniques.

of Section 6 use the filtered load signal as it is directly
available to applications (and which correlates strongly
with running time as shown in Section 2), we have also
applied our analysis and prediction techniques to the
“unfiltered” load signal with similar results.

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models 5

o gk e

P Pos

O [AT 4

1T '\TTEQ; i ‘Yé 1‘\‘, R ‘
o | | T !
E o Lphbn LAt et
=osi T :Hﬁﬁ‘ éAEAA“Az{

olbBiaAR tameallly) eloetBeRelasastasalad

v v v oY VoV vV Ve Yy oY

vV v, v vV v g v Vv

-0.5f ¢ V¢ Vv v

argus.
pius
bruce
cobain
yl.n
themis.nectar -
uranus.nectar -
zeno.nectar t

ascle
darr
h

Figure 3. Statistical summary of load traces.

By subjecting various DUX systems to varying loads
and sampling at progressively higher rates, we deter-
mined that DUX updates the load average value at a
rate of 1/2 Hz. We chose to sample at 1 Hz in or-
der to capture all of the load signal’s dynamics made
available by the kernel. We collected load traces on 38
hosts belonging to the Computing, Media, and Com-
munication Laboratory (CMCL) at CMU, and to the
Pittsburgh Supercomputing Center (PSC) for slightly
more than one week in late August, 1997. A second
set of week-long traces was acquired on almost exactly
the same set of machines in late February through early
March, 1998. The results of the statistical analysis were
similar for the two sets of traces. In this paper, we de-
scribe and use the August 1997 set. A more detailed
description of our analysis and the individual results
for each trace is available elsewhere [9]. The traces
themselves, as well as a tool for generating realistic
workloads using them, are available from the web at
http://www.cs.cmu.edu/~pdinda/LoadTraces.

All of the hosts in the August 1997 set were DEC
Alpha machines running DUX. Thirteen of the hosts
are in the PSC’s production cluster. Of these, there are
two front-end machines, four interactive machines, and
seven batch machines. In addition, traces were taken on
eight hosts that comprise our lab’s experimental cluster,
two large memory machines used by our group as com-
pute servers, and fifteen desktop workstations owned by
members of our research group.

Figure 3 summarizes these traces in a Box plot vari-
ant. The central line in each box marks the median
load, while the lower and upper lines mark the 25th and
75th percentiles. The lower and upper “whiskers” ex-
tending from the box mark the actual 2.5th and 97.5th

percentiles. The circle marks the mean and the trian-
gles mark the 2.5th and 97.5th percentiles assuming a
normal distribution with the trace’s mean and variance.

The following points summarize the results of our
statistical analysis [9] that are relevant to this study:

(1) The traces exhibit low means but very high vari-
ability, measured by the variance, interquartile range,
and maximum. Only four traces have mean loads near
1.0. The standard deviation (square root of the vari-
ance) is typically at least as large as the mean, while
the maximums can be as much as two orders of mag-
nitude larger. This high variability indicates that there
exists ample opportunity for prediction algorithms to
improve matters.

(2) Measures of variability, such as the variance and
maximum, are positively correlated with the mean, so a
machine with a high mean load will also tend to have a
large variance and maximum. This correlation suggests
that there is more opportunity for prediction algorithms
on more heavily loaded machines.

(3) The traces have relatively complex, sometimes
multimodal distributions that are not well fitted by
common analytic distributions. However, we note here
that assuming normality (but disallowing negative val-
ues) for the purpose of computing a 95% confidence
interval is a reasonable operation.

(4) Time series analysis of the traces shows that load
is strongly correlated over time. The autocorrelation
function typically decays very slowly while the peri-
odogram shows a broad, almost noise-like combination
of all frequency components. An important implication
is that linear models may be appropriate for predicting
load signals. However, the complex frequency domain
behavior suggests such models may have to be of un-
reasonably high order.

(5) The traces exhibit self-similarity with Hurst Pa-
rameters [2,4] ranging from 0.63 to 0.97, with a strong
bias toward the top of that range. Hurst parameters
in the range of 0.5 to 1.0 indicate self-similarity with
positive near-neighbor correlations. This result tells us
that load varies in complex ways on all time scales and
has long-range dependence. Long-range dependence
suggests that using the fractional ARIMA (ARFIMA)
modeling approach [20,16,4] may be appropriate.

(6) The traces display what we term “epochal behav-

”

ior.” The local frequency content (measured by using

a spectrogram) of the load signal remains quite stable

6 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

Unpredictable —Fixed Linear Filter — Partially Predictable
Random Signal Signal

m 7 Zl:zwlatil +a H
& l “ i “

o g’ <<’
a ~WhiteNoise (0,07) 2 z >

2
Z, =0,
Figure 4. Linear time series models.

for long periods of time (150-450 seconds mean, with
high standard deviations), but changes abruptly at the
boundaries of such epochs. Such abrupt transitions are
likely to be due to processes being created, destroyed, or
entering new execution phases. This result implies that
linear models may have to be refit at these boundaries.
Our evaluation (Section 6) ignores these boundaries, so
we do see the effect of inadvertently crossing one during
prediction.

Strictly speaking, (6) means that load is not station-
ary. However, it is also not free to wander at will—
clearly load cannot rise to infinite levels or fall below
zero. This is not incompatible with the “borderline sta-
tionarity” implied by (5).

4. Linear time series models

The main idea behind using a linear time series
model in load prediction is to treat the sequence of pe-
riodic samples of host load, (2;), as a realization of a
stochastic process that can be modeled as a white noise
source driving a linear filter. The filter coefficients can
be estimated from past observations of the sequence. If
most of the variability of the sequence results from the
action of the filter, we can use its coeflicients to estimate
future sequence values with low mean squared error.

Figure 4 illustrates this decomposition. In keeping
with the relatively standard Box-Jenkins notation [6],
we represent the input white noise sequence as {a;) and
the output load sequence as {z;). On the right of Fig-
ure 4 we see our partially predictable sequence (z),
which exhibits some mean p and variance o2. On the
left, we see our utterly unpredictable white noise se-
quence (a;), which exhibits a zero mean and a variance
o2. In the middle, we have our fixed linear filter with
coefficients (1);). Each output value z; is the sum of
the current noise input a; and all previous noise inputs,
weighted by the (1);) coefficients.

Given an observed load sequence (z;), the optimum
values for the coefficients 1; are those that minimize

02, the variance of the driving white noise sequence
(at). Notice that the one-step-ahead prediction given
all the data up to and including time ¢ — 1 is 3} ; =
> =1 tjai—j, since the expected value of a; = 0.) The
noise sequence consists simply of the one-step-ahead
prediction errors and the optimal coeflicient values min-
imize the sum of squares of these prediction errors.

The general form of the linear time series model is, of
course, impractical, since it involves an infinite summa-
tion using an infinite number of completely independent
weights. Practical linear time series models use a small
number of coefficients to represent infinite summations
with restrictions on the weights, as well as special casing
the mean value of the sequence, . The statistical goal
of these models is to capture the autocorrelation struc-
ture of the signal parsimoniously—in as few parameters
as possible. To understand these models, it is easiest to
represent the weighted summation as a ratio of polyno-
mials in B, the backshift operator, where B%z; = z_g.
For example, we can write z; = Z]Oil Yia_; + a; as
2 = ¥ (B)a; where)(B) = 1+ B+1yB? +... Using
this scheme, the models we examine in this paper can
be represented as

o(B)
SB) 1By T @

where the different model classes we examine in this
paper (AR, MA, ARMA, ARIMA, ARFIMA, BM (in-
cluding LAST), and MEAN) constrain §(B), ¢(B) and
d in different ways. In the signal processing domain, this

Zt =

kind of filter is known as a pole-zero filter. The roots
of §(B) are the zeros and the roots of ¢(B)(1 — B)? are
the poles. It is also a state-space filter, as can be seen if
written as 2 +1m12¢—1 +122t—2+. . . +Nptd2t—p—d = G +
61a;—1+602a;—2+. .. 4+0,2—, wheren(B) = ¢(B)(1-B)?
for integer d. In general, such a filter can be unstable
in that its outputs can rapidly diverge from the input
signal. This instability is extremely important from the
point of view of the implementor of a load prediction
system. Such a system will generally fit a model (choose
the 8(B) and ¢(B) coefficients, and d) using some m
previous observations. The model will then be “fed”
the next n observations and asked to make predictions
in the process. If the coefficients are such that the filter
is unstable, then it may explain the initial m obser-
vations very well, yet fail miserably and even diverge
(and crash!) when used on the n observations after the
fitting.

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models 7

AR(p) models:
toregressive models) has z; = ﬁat + p where ¢(B)

The class of AR(p) models (purely au-

has p coefficients. From the point of view of a system
designer, AR(p) models are highly desirable since they
can be fit to data in a deterministic amount of time. In
the Yule-Walker technique that we used, the autocor-
relation function is computed to a maximum lag of p
and then a p-wide Toeplitz system of linear equations
is solved. Even for relatively large values of p, this can
be done almost instantaneously. Another advantage of
AR(p) models is that they are remarkably stable.

MA(q) models: The class of MA(g) models (purely
moving average models) has z; = 6(B)a; where 6(B)
has ¢ coefficients. MA(q) models are a much more diffi-
cult proposition for a system designer since fitting them
takes a nondeterministic amount of time. Instead of a
linear system, fitting a MA(g) model presents us with a
quadratic system. Our implementation, which is non-
parametric (ie, it assumes no specific distribution for
the white noise source), uses the Powell minimization
procedure [27, 406-413] to minimize the sum of squares
of the t + 1 prediction errors. The number of iterations
necessary to converge is nondeterministic and data de-

pendent.

ARMA (p,q) models: The class of ARMA(p,q) mod-
els (autoregressive moving average models) has z; =
%at + p where ¢(B) has p coefficients and §(B) has ¢
coefficients. By combining the AR(p) and MA(gq) mod-
els, ARMA(p,q) models hope to achieve greater par-
simony. From a system designer’s point of view, this
may be important, at least in so far as it may be pos-
sible to fit a more parsimonious model more quickly.
Like MA(g) models, however, ARMA (p,q) models take
a nondeterministic amount of time to fit to data, and
we use the same Powell minimization procedure to fit

them.

ARIMA(p,d,q) models: The class of ARIMA(p,d,q)
models (autoregressive integrated moving average mod-
els) implement Equation 1 for positive integer d. Intu-
itively, the (1 — B)? component amounts to a d-fold
integration of the output of an ARMA((p,q) model. Al-
though this makes the filter inherently unstable, it al-
lows for modeling nonstationary sequences. Such se-
quences can vary over an infinite range and have no nat-

ural mean. Although load clearly cannot vary infinitely,

it doesn’t have a natural mean either. ARIMA(p,d,q)
models are fit by differencing the sequence d times and
fitting an ARMA (p,q) model as above to the result.

ARFIMA (p,d,q) models: The class of ARFIMA(p,d,q)
models (autoregressive fractionally integrated mov-
ing average models) implement Equation 1 for frac-
tional values of d, 0 < d < 0.5. By analogy to
ARIMA (p,d,q) models, ARFIMAs are fractionally in-
tegrated ARMA (p,q) models. The details of fractional
integration [20,16] are not important here other than
to note that (1 — B)? for fractional d is an infinite se-
quence whose coefficients are functions of d. The idea
is that this infinite sequence captures long range de-
pendence while the ARMA coeflicients capture short
range dependence. Since our sequences exhibit long-
range dependence, even after differencing, ARFIMAs
To fit ARFIMA
models, we use Fraley’s Fortran 77 code [15], which does
maximum likelihood estimation of ARFIMA models fol-

lowing Haslett and Raftery [19]. This implementation

may prove to be beneficial models.

is also used by commercial packages such as S-Plus. We
truncate (1 — B)? at 300 coefficients and use the same
representation and prediction engine as with the other
models.

Simple models for comparison: We also implemented
two very simple models for comparison, MEAN and
BM. MEAN has z; = u, so all future values of the
sequence are predicted to be the mean. This is the best
predictor, in terms of minimum mean squared error,
for a sequence which has no correlation over time and
we also use it to measure the raw variance of the load
signal. The BM model is an AR(p) model whose coeffi-
cients are all set to 1/p. This simply predicts the next
sequence value to be the average of the previous p val-
ues, a simple windowed mean. p is chosen to minimize
mean squared error for ¢t + 1 predictions. It is impor-
tant to note that the LAST model, which predicts that
all future values will be the same as the last measured
value, is simply a BM(1).

Making predictions: After fitting one of the above
models, we construct a predictor from it. The predic-
tor consists of the model converted to a uniform form,
the predicted next sequence value, a queue that holds
the last p + d (d = 300 for ARFIMA models) sequence

values, and a queue the holds the last ¢ prediction er-

8 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

rors. When the next sequence value becomes available,
it is pushed onto the sequence queue, its corresponding
predicted value’s absolute error is pushed onto the error
queue, and the model is evaluated (O(p + d + q) opera-
tions) to produce a new predicted next sequence value.
We refer to this as stepping the predictor. At any point,
the predictor can be queried for the predicted next k
values of the sequence, along with their expected mean
squared errors (O(k(p + d + ¢) operations.)

Computational requirements of models: In implement-
ing an online host load prediction system, we not only
care about the predictive performance of the different
models described above, but also their computational
costs. To assess these costs, we measured the system
and user time required to (1) fit a model and create a
predictor, and (2) step one measurement into the pre-
dictor and extract one set of 30-step-ahead predictions.
The machine we used was a 500 MHz Alpha 21164-
The time to fit a

model is dependent on the length of the measurement

based DEC personal workstation.

sequence. We measured the costs to fit to 2000 sam-
ples, which is roughly the average size sequence of the
evaluation presented in the later sections. The repre-
sentative measurement sequence we used is three hours
of the themis trace. A more detailed evaluation of these
RPS-based models can be found elsewhere [12].

Figure 5 shows the results of the measurements. It
contains six graphs, one for the (a) MEAN, LAST, and
AR models, and one each for the remaining (b) BM, (c)
MA, (d) ARMA, (e) ARIMA, and (f) ARFIMA models.
For each model, we plot several different and interesting
combinations of parameter values. For each combina-
tion, we plot two bars. The first bar (Fit/Init) plots the
time to fit the model and produce a predictor, while the
second bar (Step/Predict) plots the time to step that
predictor. Each bar is the average of 30 trials, each of
which consists of one Fit/Init step and a large number
of Step/Predict steps. The y-axis on each plot is loga-
rithmic. We replicate some of the bars from graph to
graph to simplify comparing models across graphs, and
we also draw horizontal lines at roughly 1 ms and 100
ms, which are the Fit/Init times of AR(16) and AR(512)
models, respectively. 1 ms is also the Step/Predict time
of an AR(512) predictor.

Of the more sophisticated models, the AR models,
even with very high order, are uniquely inexpensive
to fit, which would be an important benefit in an on-

line host load prediction system. However, because
the Step/Predict time always grows with the number
of parameters in the model, a more parsimonious MA,
ARMA, or ARIMA model may be more appropriate,
even though it may take longer to fit. This is not the
case with ARFIMA models, however, which always have
very expensive predictors. This is because we multiply
out the (1— B)? term to generate 300 coefficients in the
predictor. It is not clear how to avoid this.

Although the ARFIMA models are considerable
more complex than the MA; ARMA, and ARIMA mod-
els, Figure 5 shows, quite surprisingly, that they are
cheaper to fit than those simpler models. This is be-
cause we use a highly-tuned maximum likelihood code
that assumes a normal error distribution to fit the
ARFIMA model. Using normality-assuming maximum
likelihood based modelers for MA, ARMA, and ARIMA
models would reduce their Fit/Init times to a bit below
those of the ARFIMA models. We decided not to use
these because the error distributions we saw were rarely

normal.

5. Evaluation methodology

Our methodology is designed to determine whether
there are consistent differences in the practical predic-
tive power of the different model classes. Other goals
are also possible. For example, one could determine the
ezxplanatory power of the models by evaluating how well
they fit data, or the generative power of the model by
generating new load traces from fitted models and eval-
uating how well their statistical properties match the
original traces. We have touched on these other goals,
but do not discuss them here. To assess the practical
predictive power of the different model classes, we de-
signed a randomized, trace-driven simulation methodol-
ogy that fits randomly selected models to subsequences
of a load trace and tests them on immediately following
subsequences.

In practice, an online host load prediction system has
one thread of control of the following form:

do forever {
get new load measurement;
update history;
if (some criteria) {
refit model to history;

make new predictor;

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

1000

6 seconds

0.1 seconds

100

m m
3 10 I °
[[]
(8] 1 o
g M 3
ECRE E E i E
° & ®
E 0.01{H:z E
= ® M Fit/Init Time =
0.0014{ = . .
= [] Step/Predict Time I
0.0001 L] BN BN BN BN B |
'z s s s o T @ @A TS eoNT @@
fifsfzzzziic rtzzzzzzzcie
¥ ¥ ©
< < <2 <2 < Z O
Model Model
(a) AR Models (b) BM Models
100000 100000 77 seconds™=—————>
10000] 33 seconds 100004
» 10004
% 10004 el
3 S 100
c
S 100 8
3 104 . 0 104
@2 = 1
= 14 — E— é
£ M Fit/Init Time o 0.1
o 0.1 - £ ‘ ol §
£ [Step/Predict Time £ 0.01 sl §1 60 Al
= 0.014 0.001 :vm/i;ﬂ:ew
E| g ep/Predict Iime
0.001 0.000111L |
0.0001+ © = NS O~ NS o
© ~ N = N I o © NN NN
T 5 5 T < T I <% IIIIIIIIZ
g ¢ ¢ £ £ £ £ = SSSSS=5SsS
< = s Xrrrxrxxxx
< o <<<<<I<I<I<L
Model
(c) MA Models
100000 100000
53 seconds 72 ds =
100004 100001 %~ 53 seconds 36 seconds\‘
& 10004 @ 1000/
= ©
S 1004 § 100
g 10 g 10 HELLLE
E M | i
o 0.1] < o1l
E 001 R il g o
= : iz 0.014 : B Fit/Init Time
000.(0)81’ 0.0014 g 1 [] step/Predict Time |
T g NenccsNaNT ST e@e 0000t LELE, A8 BN ELER IR EN N
THhohoQ© - N®M—N®—- NO«- O NxT 2
CyrsSdococooddasssocw
S E A EE RS EE LSS £
r====2=zz2zz2zzz:=z:=
{FYrrrrrrrXCC L [T
<< < I<c < I < << <<
Model
(e) ARIMA Models (f) ARFIMA Models

Figure 5. Required CPU time for various prediction models, 2000 sample fits.

10 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

Fit Interval
5 min...3 hours
m=600 to 10800 samples)

Test Interval
5 min...3 hours

(n=600 to 10800 sample‘s)

Load Trace

~one week _ _ _ 4

=‘< >
cross m tcros_ t Cross
Crossover Point
3 hours, trace length - 3 hours

345,000 to >1M

‘
samples at 1Hz Zt +n-1

Model class Number of parameters

MEAN none

BM(p) (inc. LAST) | none

AR(p) p=1..32
MA(q) q=1..8
ARMA(p,q) p=1.4, q=1.4

ARIMA (p,d,q)
ARFIMA (p,d,q)

p=1.4,d=1..2,q=1.4
p=1.4, d by fit, q=1..4

Figure 6. Testcase generation.

}
step predictor;

sleep for sample interval;

}

where history is a window of previous load values. Fit-
ting the model to the history is an expensive operation.
Once a model is fitted, a predictor can be produced
from it. Stepping this predictor means informing it of a
new load measurement so that it can modify its inter-
nal state. This is an inexpensive operation. Prediction
requests arrive asynchronously and are serviced using
the current state of the predictor. A prediction request
that arrives at time ¢ includes a lead time k. The pre-
dicted load values 2}, 22, ..., 2F are returned along with
model-based estimates of the mean squared prediction
error for each prediction.

Evaluating the predictive power of the different
model classes in such a context is complicated because
there is such a vast space of configuration parameters
to explore. These parameters include: the trace, the
model class, the number of parameters we allow the
model and how they are distributed, the lead time, the
length of the history to which the model is fit, the length
of the interval during which the model is used to pre-
dict, and at what points the model is refit. We also
want to avoid biases due to favoring particular regions
of traces.

To explore this space in a reasonably unbiased way,
we ran a large number of randomized testcases on each
of the traces. Figure 6 illustrates the parameter space
from which testcase parameters are chosen. A testcase
is generated and evaluated using the following steps.

1. Choose a random crossover point, teross, from
within the trace.

2. Choose a random number of samples, m, from
600,601,...,10800 (5 minutes to three hours.)
The m samples preceding the crossover point,
Zteposs =1 Zoposs—mA1s -+ - s Zheness—1 L€ IN the fit in-
terval.

3. Choose a random number of samples, n from
600,601, . ..,10800 (5 minutes to three hours.) The
n samples including and following the crossover
POINt, 24, ...s Zterosatls -~ »Zterosatn—1, are in the
test interval.

4. Choose a random AR, MA, ARMA, ARIMA, or
ARFIMA test model from the table in Figure 6, fit
it to the samples in the fit interval, and generate a
predictor from the fitted test model.

5. For i = m to 1, step the predictor with z_,,,,—; (the
values in the fit interval) to initialize its internal
state. After this step, the predictor is ready to be
tested.

6. For i =0 to n — 1 do the following:
e Step the predictor with z;_,,,+; (the next value
in the test interval.)
e For each lead time k¥ = 1,2,...,30 seconds,

sk .
Pterossti 15
the prediction of z,,,.+irx given the sam-

produce the predictions 2f ..

ples Rteross —M) Plepross—mALs « =+ 3 Rteposstis Com-
pute the prediction errors af , = 2f . —
Zteross itk

7. For each lead time £ = 1,2,...,30 seconds, ana-

lyze the k-step-ahead prediction errors a,’;ﬂ., i =
0,1,...,n—1.

8. Output the testcase parameters and the analysis of
the prediction errors.

For clarity in the above, we focused on the linear time
series model under test. Each testcase also includes a
parallel evaluation of the BM and MEAN models in
order to facilitate direct comparison with the simple
BM model and the raw signal variance.

The lower limit we place on the length of the fit and
test intervals is purely prosaic—the ARFIMA model
needs about this much data to be successfully fit. The
upper limit is chosen to be greater than most epoch
lengths so that we can see the effect of crossing epoch

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models 11

boundaries. The models are limited to eight param-
eters because fitting larger MA, ARMA, ARIMA, or
ARFIMA models is prohibitively expensive in a real
system. We did also explore larger AR models, up to
order 32.

The analysis of the prediction errors includes the fol-
lowing. For each lead time, the minimum, median, max-
imum, mean, mean absolute, and mean squared predic-
tion errors are computed. The one-step-ahead predic-
tion errors (ie, a;,;, i = 0,1,...,n — 1) are also sub-
ject to IID and normality tests as described by Brock-
well and Davis [7, pp. 34-37]. IID tests included the
fraction of the autocorrelations that are significant, the
Portmanteau Q statistic (the power of the autocorrela-
tion function), the turning point test, and the sign test.
Normality was tested by computing the R? value of a
least-squares fit to a quantile-quantile plot of the values
or errors versus a sequence of normals of the same mean
and variance.

We ran approximately 152,000 such testcases, which
amounted to about 4000 testcases per trace, or about
1000 per model class and parameter set, or about 30
An addi-
tional 38,000 testcases were run to enable a fair com-
parison between the LAST and AR(16) models. Our
parallelized simulation discarded testcases in which an

per trace, model class and parameter set.

unstable model “blew up,” either detectably or due to a
floating point exception. This amounted to fewer than
5% of the testcases, and was almost entirely confined to
the ARIMA and ARFIMA models. The results of the
accepted testcases were committed to a SQL database
to simplify the analysis discussed in the following sec-

tion.

6. Results

The section addresses the following questions: Is load
consistently predictable? If so, what are the consis-
tent differences between the different model classes, and
which class is preferable? To answer these questions
we analyze the database of randomized testcases from
Section 5. For the most part we will address only the
mean squared error results, although we will touch on
the other results as well. It is important to reiterate
the comments of Section 5: we are examining the prac-
tical predictive power of the models here, not the their
explanatory power, or “fit.”

Load is consistently predictable: For a model to pro-
vide consistent predictability of load, it must satisfy two
requirements. First, for the average testcase, the model
must have a considerably lower expected mean squared
error than the expected raw variance of the load sig-
nal (ie, the expected mean squared error of the MEAN
model.) The second requirement is that this expecta-
tion is also very likely, or that there is little variability
from testcase to testcase. Intuitively, the first require-
ment says that the model provides good predictions on
average, while the second says that most predictions are
close to that average.

Figure 7(a) suggests that load is indeed consistently
predictable in this sense. The figure is a Box plot that
shows the distribution of one-step-ahead (one second)
mean squared error measures (ie, the distribution of the

1 n—1

measure) ;_

tion 5) for 8 parameter models on all of the traces. In

(ai,;)?, using the formalisms of Sec-

the figure, each category is a specific class of model and
is annotated with the number of samples for that class.
For each class, the circle indicates the expected mean
squared error, while the triangles indicated the 2.5th
and 97.5th percentiles assuming a normal distribution.
The center line of each box shows the median while
the lower and upper limits of the box show the 25th
and 75th percentiles and the lower and upper whiskers
show the actual 2.5th and 97.5th percentiles.

Notice that the expected raw variance (MEAN) of a
testcase is approximately 0.05, while the expected mean
squared error for all of the model classes is nearly zero.
In terms of the length of the 95% confidence interval
for the running time of a one second task as described
in Section 2, this is a reduction from (2)(1.96)1/0.05 =
0.87 seconds to virtually zero for all of the classes of
predictive models, including the simple BM model. The
figure also shows that our second requirement for con-
sistent predictability is met. We see that the variability
around the expected mean squared error is much lower
for the predictive models than for MEAN. For example,
the 97.5th percentile of the raw variance is almost 0.3
(2.2 second interval) while it is about 0.02 (0.6 second
interval) for the predictive models.

Figures 7(b) and 7(c) show the results for 15 second
predictions and 30 second predictions. Notice that, ex-
cept for the MA models, the predictive models are con-
sistently better than the raw load variance, even with
30 second ahead predictions. We also see that MA mod-

12 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

tag: — lead:1 params: [8,8]

T
|
S o2 | 1
l i
o |
o |
c 0.1]
= ‘ »
0 fa R :
§ ot - = = <= = = |
v
= v v
0.1k ¥ ‘ ‘ ‘ ‘ ‘ L
©O © < — © N~ N~
()] [e2] — — N o [e)]
()] (2] — N~ [qV) N n
@ @ by A 3! 3| N
3) & < < < <
=z s < = 2 2 =
('8
h @ < g o
= <
(a) 1 second predictions
tag: — lead:15 params: [8,8]
_ 0.3 ! .
S n s
— I
S0 | *
g | - — | = T e
Sor 4T T Ty
jo
U) I I I I I
= o i R
(] v v
% 01 v ’ v v
. . . Y . . .
[o)]) N N~ © [Te) [ee]
< < — o N o (2]
()] [} — N~ N N n
@ @ S A | 3| N
S S x < < < <
zZ s < = 2 = =
[T
h, @ < 5.:: o4
= <
(b) 15 second predictions
tag: — lead:30 params: [8,8]
. 03 | i
S n s
— I
woo2r — | o 1
o 3 | ! — |
& A
g_ 01’ : | | | | | : 7
U) I I I I I
DI s = e
8
= 01} ¢ ’ v v v v
. . . Y . . .
[Te) [Te) N N~ © [Te) (2]
~ ~ — o N o (o2}
()] [} — N~ N N n
@ @ S A | 3| N
S S x < < < <
zZ s < = 2 = =
[T
h, @ < 5.:: o4
= <

(c) 30 second predictions

Figure 7. Distributions of mean squared errors for all traces using
8 parameter models.

els perform quite badly, especially at higher lead times.
This was also the case when we considered the traces
individually and broadened the number of parameters.
MA models are clearly ineffective for load prediction.

Successful models have similar expected performance
overall, but differ on heavily loaded machines: Surpris-
ingly, Figures 7(a)—(c) also show that the differences be-
tween the successful models, in aggregate over all the
traces, are actually quite small. This is also the case if
we expand to include testcases with 2 to 8 parameters
instead of just 8 parameters. With longer lead times,
the differences do slowly increase.

For more heavily loaded machines, the differences
can be much more dramatic. For example, Figure 8(a)
shows the distribution of one-step-ahead (one second)
mean squared error measures for 8 parameter models
on the axp0.psc trace. Here we see an expected raw
variance (MEAN) of almost 0.3 (2.2 second confidence
interval) reduced to about 0.02 (0.6 second interval)
by nearly all of the models. Furthermore, the mean
squared errors for the different model classes are tightly
clustered around the expected 0.02 value, quite unlike
with MEAN, where we can see a broad range of val-
ues and the 97.5th percentile is almost 0.5 (2.8 second
interval.) The axp0.psc trace and others are also quite
amenable to prediction with long lead times. For exam-
ple, Figures 8(b) and (c) show 15 and 30 second ahead
predictions for 8 parameter models on the axp0.psc
trace, respectively. With the exception of the MA mod-
els, even 30 second ahead predictions are consistently
much better than the raw signal variance. These figures
remain essentially the same if we include testcases with
2 to 8 parameters instead of just 8 parameters. The
use of more sophisticated models is more important on
heavily loaded hosts than on lightly loaded hosts.

Although the differences in expected performance be-
tween the successful models are very small, they are
generally statistically significant. We can algorithmi-
cally compare the expected mean squared error of the
models using the unpaired t-test [21, pp. 209-212], and
do ANOVA procedures to verify that the differences we
detect are significantly above the noise floor. For each
pair of model classes, the t-test tells us, with 95% con-
fidence, whether the first model is better, the same, or
worse than the second. We do the comparisons for the
cross product of the models at a number of different lead
times. We consider the traces both in aggregate and in-

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models 13

MEAN BM AR MA ARMA ARIMA ARFIMA
MEAN = > > > > > >
tag: axp0.psc lead:1 params: [8,8] ffr‘f Z = = : = = =
TL ' ' ' MA < > > = > = >
| ARMA < = = < = = =
= 0.4+ ! 4 ARIMA < = = < = = =
e ! ARFIMA < = = < = = =
L
209 [|
g ‘ (a) all traces, one step ahead
Foa2t |]
I
% ‘%‘ MEAN BM AR MA ARMA ARIMA ARFIMA
% 0.1- 1 MEAN = > > = > > >
BM < = > < = = >
% - = e e AR < < = < = < =
(0] i y ! ! Y . MA = > > = > > >
g & 8 & 8 4 48 s | ST S I C .
; 0 % < g é <§(ARFIMA < < = < < < =
< 3 = T & I
w @ < < x
= (b) axp0.psc trace, 16 steps ahead
Figure 9. T-test comparisons: (a) all traces aggregated, lead 1, 8
(a) 1 second predictions parameters. Longer leads are essentially the same except MA is
tag: axp0.psc lead:15 params: [8,8] always worse. (b) axp0, lead 16, 8 parameters.
kS o
—_ F ! ! Bl
g0'4 | ! dividually, and we use several different constraints on
Lu I
o3l E | the number of parameters.
g Figure 9(a) shows the results of such a t-test com-
o | | . .
o2} 0 | parison for the aggregated traces, a lead time of 1, and
] ! . .
L + v 8 parameters. In the figure, the row class is being com-
0.1r PN 1 .
== = % =% % pared to the column class. For example, at the inter-
© © © ~ o 0 ~ section of the AR row and MA column, there is a ’<’,
S S & 3 ¥ P B S .
™ ® 2 % ! g S which indicates that, with 95% confidence, the expected
z s s = = .
B @ g z g mean squared error of the AR models is less than that
= <

(b) 15 second predictions
tag: axp0.psc lead:30 params: [8,8]

T T T
.y

©
~
:

Mean Squared Error
o
@
MEAN:3963 *LEH

o
[N
:

o
[N
T

AR:26 | 4} >

MA:132 | <F~B}

BM:3963 —w[ﬁt%
ARMA:31 [4- ﬁ o
ARIMA:25 + Hﬁ%

ARFIMA:57 < Eﬂ' >

(c) 30 second predictions

Figure 8. Distributions of mean squared errors for axp0.psc trace
using 8 parameter models.

of MA models, thus the AR models are better than MA
models for this set of constraints. For longer lead times,
we found that the results remained essentially the same,
except that MA became consistently worse.

The message of Figure 9(a) is that, for the typical
trace and a sufficient number of parameters, there are
essentially no differences in the expected mean squared
error of the BM, AR, ARMA, ARIMA, and ARFIMA
models, even with high lead times. Further, with the
exception of the MA models, all of the models are better
than the raw variance of the signal (MEAN model.)

For machines with higher mean loads, there are more
statistically significant differences between the models.
For example, Figure 9(b) shows a t-test comparison for
the axp0.psc trace at a lead time of 16 seconds for 8
parameter models. Clearly, there is more differentia-
tion here, and we also see that the ARFIMA models
do particularly well, as we might expect given the self-
similarity result of Section 3. However, notice that the
AR models are doing about as well.

The results of these t-test comparisons can be sum-

14 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

marized as follows: (1) Except for the MA models, the
models we tested are significantly better (in a statistical
sense) than the raw variance of the trace and the differ-
ence in expected performance is also significant from a
systems point of view. (2) The AR, ARMA, ARIMA,
and ARFIMA models are significantly better than or
equal to the BM model and occasionally the difference
in expected performance is also significant from a sys-
tems point of view. This is especially the case on more
heavily loaded hosts. (3) The AR, ARMA, ARIMA, and
ARFIMA models have similar expected performance.

AR models are better than BM and LAST models:
Since the AR, ARMA, ARIMA, and ARFIMA mod-
els have similar expected mean squared error when
evaluated using the methods of the previous sections,
the inclination is to prefer the AR models because of
their much lower computational requirements. How-
ever, should we prefer AR models over BM models, or
over their degenerate case, the LAST model? After
all, these latter models also have low overhead and are
much easier to understand and build. Also, the ex-
pected mean squared error of BM is close to that of
AR, ignoring the more heavily loaded hosts.

To address this issue, we compared the normalized
performance of the AR, BM, and LAST models. The
metric we compared was the expected percentage re-

duction in variance—the average value of

testcasevariance — meansquared error

- -100%
testcasevariance

over all the testcases. The primary advantage of this
comparison is that very high variance testcases, which
are almost always due to crossing an epoch boundary,
do not disproportionately affect the expected percent-
age reduction in variance (as they do the expected ab-
solute variance we measured in the previous section.)
However, comparing two models by this metric only
makes sense if their testcases are paired, resulting in
matched denominators. Given our experimental setup,
this is only possible between the MEAN, BM, and one
other model.

Figure 10 uses this process to compare AR models of
different orders to BM models. Each graph in the figure
plots the average percentage reduction in variance, over
all the testcases, as a function of the lead time for AR
models of a given order and their corresponding BM
models. The performance of the MEAN model is 0% in

N
o
o

©
@
| |

o)
@
n

N
@

"smaaa AR(16) models
.....lllll
EEEEm

N
@

LAST models

o

)
o

Average Percent Reduction in Variance

5 10 15 20 25 30
Lead Time (seconds)

o

Figure 11. Paired normalized comparisons of AR(16) and LAST
models by lead time.

all cases. Each point on a graph encodes approximately
1000 testcases.

As the figure makes clear, AR models of sufficiently
high order outperform BM models, especially at high
lead times. Notice that for predictions as far ahead
as 30 seconds, the AR(16) and AR(32) models provide
lower variance than the raw load signal, while the BM
models produce prediction errors that are actually more
surprising than the signal itself. Indeed, the BM mod-
els only seem useful at lead times of 10 seconds or less.
Where they work as well as the AR models is at ex-
tremely short prediction horizons.

Figure 10 also shows that the performance of the
AR models generally increases as their order increases.
There are diminishing returns with higher order mod-
els, however. Notice that the gain from the AR(16)
model to the AR(32) model is marginal. For very low
order models, rather odd effects can occur, such as with
AR(2) models (Figure 10(b)), which buck the overall
trend of improving on lower order models. We noticed
that AR models of order less than 5 have highly vari-
able behavior, while AR models of order greater than
16 don’t significantly improve predictive performance.

As we discussed in Section 3, host load is produced by
an exponential smoothing process in the kernel, which
is an AR(1). If the only source of predictability in the
host load signal was the exponential smoothing done in
the kernel, we would expect that AR models of higher
order would not provide better predictability. As we
can see, however, higher order models do indeed result
in lower mean squared prediction errors.

It is interesting to compare AR(16) models to the

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models 15

- AR(1) models

BM(32) models

5 10 15 20 25 30
Lead Time (seconds)

(a) AR(1) and BM(32)

AR(4) models

BM(32) models

5 10 15 20 25 30
Lead Time (seconds)

(c) AR(4) and BM(32)

Ban AR(16) models

BM(32) models

3100
c
8
§ 80
£
= 60]
S
S 40]
e}
&
= 20
[
3
5 0
o
& -20]
o
S 40
<™
3100
c
8
§ 80
£
= 60]
S
S 40]
he}
&
= 20
C
3
5 0
o
S -201
®
S 40
<™
3100
C
i)
§ 80
£
= 60]
S
S 40]
©
&
T 20
C
3
S 0
o
S 201
o
S 40
<™

5 10 15 20 25 30
Lead Time (seconds)

(e) AR(16) and BM(32)

8 100
c
2 80]
@©
> 601
£
c 40
i) L]
‘g’ 204 "
g o0
14 u BM(32) models
€ -20] "
S 40 .
a "a
o 601 "sa_ AR(2) models
g -80- "taa,
Fo} Smmm,
= -100 ‘ ‘ ‘ ‘ —nn
<
0 5 10 15 20 25 30
Lead Time (seconds)
(b) AR(2) and BM(32)
8100
c
o
§ 80
£
c 60
(o]
=1 n
S 401 "
el L] -
g Sy AR(8) models
— 20 "mpgy
C
[0} "Emmg
o L NN T
dlf 0 LELTT
BM(32) models
S -201 (32)
g
g |
Z -40 : : : ‘ : !
0 5 10 15 20 25 30
Lead Time (seconds)
(d) AR(8) and BM(32)
8100
[y
S
c;u 801
£
c 60
RS
S 40] "
e)
4 "ng AR(32) models
- 204 EmEmg
% Illll.....
s} EmEERN
E 0
BM(32) models
S -20] (32)
o
9 |
Z -40 : : : : : !
0 5 10 15 20 25 30

Lead Time (seconds)
(f) AR(32) and BM(32)

Figure 10. Paired normalized comparisons of AR and BM models by lead time.

16 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

simplest possible predictor, the LAST model. We ran
an additional set of testcases comparing AR(16) and
LAST models to do this. It is possible, of course, to
mine the testcases in the original set to do the compari-
son. However, the testcases we would look at would not
be random, but rather those where the BM model had
selected LAST as being most appropriate. By running
a separate set of testcases, we were able to eliminate
this bias.

Figure 11 compares the average percentage reduction
in variance, computed as before, of the AR(16) model
and the LAST model as a function of the lead time. As
we can see, the AR(16) model significantly outperforms
the LAST model, especially for lead times greater than
five seconds. The AR(16) curve of Figure 11 is differ-
ent from that of Figure 10(e) because of the use of a
different random set of testcases.

AR(16) models or better are appropriate: Clearly, us-
ing one of the more sophisticated model classes, other
than MA, for load prediction is beneficial. Further,
using an AR, ARMA, ARIMA, or ARFIMA model is
preferable to the BM model.

isons, AR models of sufficiently high order considerably

In the paired compar-

outperform BM and LAST models, especially at longer
lead times. AR models of the appropriate order are
much less expensive to fit than the ARMA, ARIMA or
ARFIMA models and are of similar or lesser cost to use.
In addition, AR models can be fitted in a determinis-
tic amount of time. Because of this combination of high
performance and low overhead, AR models are the most
appropriate for host load prediction. AR models of or-
der 5 or higher seem to work fine. However, we found
the knee in the performance of the AR models to be
around order 16. Since fitting AR models of this order,
or even considerably higher, is quite fast, we recommend
using AR(16)s or better for host load prediction.

Prediction errors are not IID normal: As we described
in Section 5, our evaluation of each testcase includes
tests for the independence and normality of the one-
step-ahead prediction errors. Intuitively, we want the
errors to be independent so that they can be charac-
terized with a probability distribution function, and we
want the distribution function to be normal in order to
simplify computing confidence intervals from it.

For the most part, the errors we see with the different

models are not independent or normal to any high con-

fidence level. However, from a practical point of view,
the errors are much less correlated over time than the
raw signal. For example, for AR(8) models, the Port-
manteau Q statistic tends to be reduced by an order
of magnitude or more, which suggests that those auto-
correlations that are large enough to be significant are
only marginally so. Furthermore, assuming normality
for the purpose of computing confidence intervals for
the running time of short tasks with no priority boosts
at high confidence levels seems to be reasonable. If we
need to predict the average host load over a longer in-
terval of time, we will sum individual predictions. By
the central limit theorem, the distribution of this sum
should converge to normality, although it may do so
slowly. However, to compute the variance of this sum,
it is necessary to use the covariances we mentioned in

Section 2.

7. Online host load prediction system

Using RPS, we implemented an online host load pre-
diction system based on the AR(16) model and evalu-
ated its performance. The system was constructed us-
ing RPS’s prediction components, which are programs
that can be composed at run-time using a variety of
different communication mechanisms to form predic-
tion systems for periodically sampled, scalar-valued sig-
nals. The system includes a component that moni-
tors its prediction errors and mean squared error es-
timates and forces the model to be refit if these quanti-
ties exceed user-specified thresholds. This section sum-
marizes the evaluation of the system, which is pre-
RPS and the
host load prediction system are publicly available from
http://www.cs.cmu.edu/~pdinda/RPS.html.

The maximum rate at which the host load predic-

sented in more detail elsewhere [12].

tion system can operate on a 500 MHz Alpha 21164-
based workstation running DUX 4.0D is roughly 730
Hz, which is almost three orders of magnitude faster
than our desired rate of 1 Hz. At rates lower than 730
Hz, the mean and median latency from when a measure-
ment is sampled to when its corresponding prediction is
ready is 2 ms. The maximum latency we have observed
is 33 ms. These measurements indicate that the system
provides extremely timely host load predictions.
Figure 12 shows the percentage of the CPU that was

in use over time, as measured by vmstat, as we swept

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models 17

100 —
>| c |2|N ® NN
=2'6'3
152258 T|T

90 slgl' 59 < | =
ﬁmw}i’%:% N0
'ﬁ%gwt"' - |z

80{E1£ 131982 9]
>%-ac)_gmrvcu 8

=l

70 E &5

- _ _ _ _ _ _ _ _ _ _QuesceatlHz

Percentage of CPU Used
[é)]
N

L)

2000

1000 1500

Time (seconds)

Figure 12. CPU utilization (system and user) of online host load
prediction system. The measurement rate is swept from 1 Hz to
1024 Hz.

the measurement rate from 1 Hz to 1024 Hz. The im-
portant result is that at the appropriate 1 Hz rate, less
than 5% of the CPU is being used. Indeed, considering
the baseline CPU utilization measured when only vm-
stat was running, the overhead is in the noise. In terms
of the network utilization, the system, when serving a
single client, transfers 1796 bytes per host load mea-
surement. At the appropriate 1 Hz measurement rate,
the system clearly uses only miniscule amounts of CPU
time and network bandwidth.

8. Related work

In application-level scheduling [5], applications sched-
ule themselves, adapting to the availability of resources,
perhaps using a framework such as QuO [32] or Dv [1].
Resource monitoring systems such as Remos [23], the
Network Weather Service [30], or Topology-d [26] pro-
vide measurements and predictions to help applications
make scheduling decisions. This paper characterized
one such measurement, (the Unix load average), studied
the performance of linear models for predicting it, found
an appropraite model, and showed that prediction using
this model can be done with very low overhead.

While considerable effort has gone into characteriz-
ing workloads [14,22,18], the focus has been on load
sharing systems [13], which schedule all of jobs in a dis-
tributed system, and not on application-level schedul-
ing. An important assumption in load sharing and bal-
ancing systems is that current load is a predictor of
future load. This work shows that that assumption is

valid in a statistically rigorous manner, and also ex-

plores the predictive power of more sophisticated pre-
dictive models. Mutka and Livny [24] studied worksta-
tion availability as a binary function of load average and
other measures. Qur previous paper [9] and the sum-
mary in this paper are the first detailed study of the
Unix load average we are aware of.

Although linear time series methods are widely used
in other areas, including networking [3,17], little work
has been done in using time series methods for host load
prediction. Samadani and Kalthofen’s work [28] is the
closest to ours. They found that small ARIMA models
were preferable to single-point predictors (eg, LAST)
and Bayesian predictors for predicting load. Their em-
pirical study concentrated on coarse grain prediction
(one minute sampling interval) of four traces that mea-
sured load as the number of non-idle processes shown
by the Unix “ps” command. In contrast, we studied
finer grain (one second sampling interval) prediction of
the DUX five-second load average on a much larger set
of machines using higher order models as well as the
ARFIMA class of models. Additionally, our study was
randomized with respect to models instead of using the
Box-Jenkins heuristic identification procedure. Finally,
we reached a different conclusion for our regime, namely
that AR models are sufficient.

The Network Weather Service (NWS) uses windowed
mean, median, and AR models to predict various re-
source measures [30] including CPU availability [31].
Our study and the study described in the latter paper
are quite complementary. The NWS study confirms our
earlier self-similarity results, quantifies how well various
measures of CPU availability, including the Unix one-
minute load average, correlate with running time, pro-
poses a new hybrid CPU availability measure, and stud-
ies the performance of NWS’s predictive models for 10
second and five minute predictions of CPU availability
measured at a 0.1 Hz rate. In contrast, we evaluated the
performance of AR and more complex linear time series
models (including one that captures the long-range de-
pendence that self-similarity induces) applied to shorter
range prediction (1 to 30 seconds) of a more dynamic
load signal (the DUX five-second load average measured
at 1 Hz.) In addition, our evaluation used a random-
ized methodology and a much larger set of traces to
gauge the models’ predictive power independent of any
particular system. Interestingly, both studies reach the
conclusion that relatively simple predictive models such

18 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

as AR are adequate for host load prediction. The con-
ference version of this paper [11] was contemporaneous
with the NWS results.

9. Conclusions

We have presented a detailed evaluation of the per-
formance of linear time series models for predicting the
Unix five-second load average on a host machine, from
1 to 30 second into the future, using 1 Hz samples
of its history. Predicting this load signal is interest-
ing because it is directly related to the running time of
compute-bound tasks.

We began by studying the statistical properties of
week-long 1 Hz load traces collected on 38 different ma-
chines. This study suggested that Box-Jenkins (AR,
MA, ARMA, and ARIMA) and ARFIMA models might
be appropriate. The computational requirements of
these classes of models span a wide range, making some
more practical than others for incorporation into an
online prediction system. We evaluated the predictive
performance of the models, as well as that of a simple
windowed-mean predictor by running 190,000 random-
ized testcases on the load traces and then analyzing the
results.

The main contribution of our evaluation is to show,
in a rigorous manner, that host load on real systems
is predictable to a very useful degree from past behav-
ior by using linear time series techniques. In addition,
we discovered that, while there are statistically signif-
icant differences between the different classes of mod-
els we studied, the marginal benefits of the more com-
plex models do not warrant their much higher run-time
costs. We reached the conclusion that AR models of or-
der 16 or higher are sufficient for predicting 1 Hz data
up to 30 seconds in the future. These models work
very well and are very inexpensive to fit to data and to
use. We implemented and evaluated an online host load
prediction system based on the AR(16) model. At the
1 Hz rate, the system uses miniscule amounts of CPU
time and network bandwidth while providing extremely
up-to-date predictions.

For longer tasks, and in the presence of priority
boosts, transforming from host load predictions to con-
fidence intervals for task running times is considerably
more complex than described in this paper. Our cur-
rent work addresses this problem and shows how to use

the resulting confidence intervals to schedule real-time
tasks [10].

References

[1] AESCHLIMANN, M., DINDA, P., KALLIVOKAS, L., LOPEzZ, J.,
LowekaMmP, B., AND O’HALLARON, D. Preliminary report
on the design of a framework for distributed visualization.
In Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’99) (Las Vegas, NV, June 1999), CSREA Press,
pp- 1833-1839.

[2] BASSINGTHWAIGHTE, J. B., BEARD, D. A., PERCIVAL, D. B,,
AND RAYMOND, G. M. Fractal structures and processes. In
Chaos and the Changing Nature of Science and Medicine:
An Introduction (April 1995), D. E. Herbert, Ed., no. 376 in
AIP Conference Proceedings, American Institute of Physics,
pPp- 54-79.

[3] Basu, S., MUKHERJEE, A., AND KLIVANSKY, S. Time series
models for internet traffic. Tech. Rep. GIT-CC-95-27, Col-
lege of Computing, Georgia Institute of Technology, Febru-
ary 1995.

[4] BERAN, J. Statistical methods for data with long-range de-
pendence. Statistical Science 7, 4 (1992), 404-427.

[5] BERMAN, F., AND WoOLSKI, R. Scheduling from the perspec-

In Proceedings of the Fifth IEEE
Symposium on High Performance Distributed Computing
HPDCY6 (August 1996), pp. 100-111.

[6] Box, G. E. P., JENKINS, G. M., AND REINSEL, G. Time
Series Analysis: Forecasting and Control, 3rd ed. Prentice
Hall, 1994.

[7] BROCKWELL, P. J., AND Davis, R. A. Introduction to Time
Series and Forecasting. Springer-Verlag, 1996.

[8] Dinpa, P,
O’HALLARON, D. The case for prediction-based best-effort

tive of the application.

LOWEKAMP, B., KALLIVOKAS, L., AND
real-time systems. In Proc. of the 7th International Work-
shop on Parallel and Distributed Real-Time Systems (WP-
DRTS 1999), vol. 1586 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, San Juan, PR, 1999, pp. 309-318. Ex-
tended version as CMU Technical Report CMU-CS-TR-98-
174.

[9] DiNDA, P. A. The statistical properties of host load. Sci-

entific Programming 7, 3,4 (1999). A version of this paper

is also available as CMU Technical Report CMU-CS-TR-

98-175. A much earlier version appears in LCR 98 and as

CMU-CS-TR-98-143.

DINDA, P. A. Resource Signal Prediction and Its Applica-

tion to Real-time Scheduling Advisors. PhD thesis, School

of Computer Science, Carnegie Mellon University, 2000. To

(10]

Appear.
[11] Dinpa, P. A., AND O’HALLARON, D. R. An evaluation of
linear models for host load prediction. In Proceedings of the
8th IEEE International Symposium on High Performance
Distributed Computing (HPDC ’99) (August 1999), pp. 87—
96. Extended version available as CMU Technical Report

CMU-CS-TR-98-148.

(12]

(13]

[14]

(15]

(16]

(17]

(24]

(25]

(26]

P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

DinpaA, P. A., AND O’HALLARON, D. R. An extensi-
ble toolkit for resource prediction in distributed systems.
Tech. Rep. CMU-CS-99-138, School of Computer Science,
Carnegie Mellon University, July 1999.

EAGER, D. L., LAzZOWSKA, E. D., AND ZAHORJAN, J. Adap-
tive load sharing in homogeneous distributed systems. IEEE
Transactions on Software Engineering SE-12, 5 (May 1986),
662-675.

EAGER, D. L., LAZOWSKA, E. D.; AND ZAHORJAN, J. The
limited performance benefits of migrating active processes
for load sharing. In SIGMETRICS ’88 (May 1988), pp. 63—
72.

FraLEY, C. Fracdiff:
tion of the parameters of a fractionally differenced
ARIMA (p, d, q) 1991.
http://www.stat.cmu.edu/general /fracdiff.

Maximum likelihood estima-

model. Computer Program,
GRANGER, C. W. J., AND JOYEUX, R. An introduction to
long-memory time series models and fractional differencing.
Journal of Time Series Analysis 1, 1 (1980), 15-29.
GroscawiITZ, N. C., AND PoLyzos, G. C. A time series
model of long-term NSFNET backbone traffic. In Proceed-
ings of the IEEE International Conference on Communica-
tions (ICC’94) (May 1994), vol. 3, pp. 1400-4.
HARCHOL-BALTER, M., AND DOWNEY, A. B. Exploiting pro-
cess lifetime distributions for dynamic load balancing. In
Proceedings of ACM SIGMETRICS ’96 (May 1996), pp. 13—
24.

HASLETT, J., AND RAFTERY, A. E. Space-time modelling
with long-memory dependence: Assessing ireland’s wind
power resource. Applied Statistics 38 (1989), 1-50.
HoskiNg, J. R. M. Fractional differencing. Biometrika 68,
1 (1981), 165-176.

JAIN, R. The Art of Computer Systems Performance Anal-
ysis. John Wiley and Sons, Inc., 1991.

LeLanp, W. E., AND OTT, T. J. Load-balancing heuristics
and process behavior. In Proceedings of Performance and
ACM SIGMETRICS (1986), vol. 14, pp. 54—69.
LowekAaMmP, B., MILLER, N., SUTHERLAND, D., Gross, T.,
STEENKISTE, P., AND SUBHLOK, J. A resource monitoring
system for network-aware applications. In Proceedings of the
7th IEEE International Symposium on High Performance
Distributed Computing (HPDC) (July 1998), IEEE, pp. 189—
196.

MuTka, M. W., AND LIvNY, M. The available capacity of
a privately owned workstation environment.
Evaluation 12, 4 (July 1991), 269-284.
OBJECT MANAGEMENT GROUP. The common object request

Performance

broker: Architecture and specification. Tech. Rep. Version
2.0, Object Management Group, July 1995.

OBRACZKA, K., AND GHEORGHIU, G. The performance of
a service for network-aware applications. In Proceedings of
the ACM SIGMETRICS SPDT’98 (October 1997). (also
available as USC CS Technical Report 97-660).

Press, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. Numerical Recipes in Fortran. Cambridge
University Press, 1986.

(28]

(29]

(30]

(31]

(32]

19

SAMADANI, M., AND KALTHOFEN, E. On distributed schedul-
ing using load prediction from past information. Abstracts
published in Proceedings of the 14th annual ACM Sympo-
sium on the Principles of Distributed Computing (PODC’95,
pp. 261) and in the Third Workshop on Languages, Compil-
ers and Run-time Systems for Scalable Computers (LCR’95,
pp- 317-320), 1996.

SUN MICROSYSTEMS, INC. Java remote method invocation
specification, 1997. Available via http://java.sun.com.
WoLskl, R. Forecasting network performance to support
dynamic scheduling using the network weather service. In
Proceedings of the 6th High-Performance Distributed Com-
puting Conference (HPDC97) (August 1997), pp. 316-325.
extended version available as UCSD Technical Report TR-
CS96-494.

WoLskI, R., SPRING, N., AND HAYES, J. Predicting the
In Pro-
ceedings of the FEighth IEEE Symposium on High Per-
formance Distributed Computing HPDC99 (August 1999),
IEEE, pp. 105-112. Earlier version available as UCSD Tech-
nical Report Number CS98-602.

ZINKY, J. A., BAKKEN, D. E., AND SCHANTZ, R. E. Archi-
tectural support for quality of service for CORBA objects.
Theory and Practice of Object Systems 3, 1 (April 1997),
55-73.

CPU availability of time-shared unix systems.

20 P. A. Dinda, D. R. O’Hallaron / Host Load Prediction Using Linear Models

Biographies

Peter Dinda is finishing his Ph.D. in the School of
Computer Science at Carnegie Mellon University, where
he is advised by David O’Hallaron. His interests include
resource signal prediction, adaptive applications, per-
formance analysis, distributed real-time systems, and
high-performance distributed computing.

David O’Hallaron is an Associate Professor of Com-
puter Science and Electrical and Computer Engineering
at Carnegie Mellon University. In 1989 he joined the
faculty at Carnegie Mellon, where he works on high-
performance distributed computing, Internet services,
and parallel scientific applications.

