
1

User-Driven Frequency Scaling
Arindam Mallik, Student Member, IEEE, Bin Lin, Gokhan Memik,Member, IEEE, Peter Dinda,Member, IEEE,

and Robert P. Dick,Member, IEEE
Department of Electrical Engineering and Computer Science, Northwestern University

Abstract— We propose and evaluate User-Driven Fre-
quency Scaling (UDFS) for improved power management
on processors that support Dynamic Voltage and Fre-
quency Scaling (DVFS), e.g, those used in current laptop
and desktop computers. UDFS dynamically adapts CPU
frequency to the individual user and the workload through
a simple user feedback mechanism, unlike currently-used
DVFS methods which rely only on CPU utilization. Our
UDFS algorithms dramatically reduce typical operating
frequencies while maintaining performance at satisfactory
levels for each user. We evaluated our techniques through
user studies conducted on a Pentium M laptop running
Windows applications. The UDFS scheme reduces mea-
sured system power by 22.1%, averaged across all our
users and applications, compared to the Windows XP
DVFS scheme.

I. I NTRODUCTION

Dynamic Voltage and Frequency Scaling (DVFS) is one
of the most commonly used power reduction techniques in
high-performance processors. DVFS varies the frequency and
voltage of a microprocessor in real-time according to process-
ing needs. Although there are different versions of DVFS, at
its core DVFS adapts power consumption and performance to
the current workload of the CPU. Specifically, existing DVFS
techniques in high-performance processors select an operating
point (CPU frequency and voltage) based on the utilization of
the processor. While this approach integrates OS-level control,
such control is pessimistic about the user. Indeed, it ignores
the user, assuming that CPU utilization is a sufficient proxy.
A high CPU utilization leads to a high frequency and high
voltage, regardless of the user’s satisfaction or expectation of
performance.

In response to this observation, on which we elaborate in
Section II-A, we introduce User-Driven Frequency Scaling
(UDFS). This technique uses direct user feedback to drive
an online control algorithm that determines the processor
frequency (Section II-B). We describe and evaluate two dif-
ferent frequency control algorithms. Previous work [1], [2]
has shown that there is variation among users with respect

Manuscript submitted: 24 Aug. 2006. Manuscript accepted: 8 Oct. 2006.
Final manuscript received: 15 Oct. 2006. This work is in part supported by
Department of Energy Award DE-FG02-05ER25691 and NSF GrantsIIS-
0613568, CNS-0551639, CNS-0347941, CCF-0541337, IIS-0536994, CCF-
0444405, ANI-0093221, ANI-0301108, and EIA-0224449.

to the satisfactory performance level for a given workload.
We exploit this variation to dynamically customize frequency
control policies to the user. Unlike previous work, on whichwe
elaborate in Section IV, our approach employs direct feedback
from the user during ordinary use of the machine.

We evaluate our techniques through user studies conducted
on a modern Pentium M laptop running Windows applications.
Our studies, described in detail in Section III, include both
single task and multitasking scenarios. The UDFS scheme
reduces measured system power by 22.1%, averaged across
all our users and applications, compared to the Windows XP
DVFS scheme.

II. U SER-DRIVEN FREQUENCYSCALING

Current DVFS techniques are pessimistic about the user,
which leads them to often use higher frequencies than neces-
sary for satisfactory performance. In this section, we elaborate
on this pessimism and then explain our response to it, User-
Driven Frequency Scaling (UDFS). Evaluations of UDFS
algorithms are given in Section III.

A. Pessimism About The User

Current software that drives DVFS does not consider the
individual user’s reaction to the slowdown that may occur
when CPU frequency is reduced. Typically, the frequency is
tightly tied to CPU usage. A burst of computation due to,
for example, a mouse or keyboard event brings utilization
quickly up to 100% and drives frequency, voltage, and power
consumption up along with it. CPU-intensive applications also
immediately cause an almost instant increase in operating
frequency and voltage.

In both cases, the CPU utilization is functioning as a proxy
for user comfort. Is it a good proxy? To find out, we con-
ducted a randomized user study of eight users, comparing four
processor frequency strategies including dynamic, staticlow
frequency (1.06 GHz), static medium frequency (1.33 GHz),
and static high frequency (1.86 GHz). The dynamic strategy is
the default DVFS used in Windows XP Professional. Note that
the maximum processor frequency is 2.13 GHz. We allowed
the users to acclimate to the full speed performance of the
machine and its applications for 4 minutes and then carried
out three different tasks with the following durations - (a)
PowerPoint (4 minutes in total, 1 minute per strategy); (b)
Shockwave (80 seconds in total, 20 seconds per strategy); (c)
FIFA (4 minutes in total, 1 minute per strategy).



0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort level

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(a)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort Level

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(b)
Fig. 1. User comfort for (a) Shockwave; (b) FIFA game.

Users verbally ranked their experiences after each
task/strategy pair on a scale of 1 (discomforted) to 10 (very
comfortable). Figure 1 illustrates the results of the studyin the
form of overlapped histograms of the participants’ reported
comfort level for each of four strategies for the Shockwave
animation and the FIFA game (powerpoint is omitted). The
horizontal axis displays the range of comfort levels allowed
in the study and the vertical axis displays the count of the
number of times that level was reported. Not surprisingly, user
comfort with any given frequency is highly dependent on the
application, but, much less obviously,there is considerable
variation among users in the frequency that is acceptable
for any given application. It is this variation that we seek
to exploit. In addition, the comfort levels for the dynamic
frequency is practically indistinguishable from the static high
frequency, which uses a lower frequency than the dynamic
strategy.

B. Technique

Our implementation of user-driven frequency scaling con-
sists of client software that runs as a Windows toolbar task
as well as software that implements CPU frequency changes
and data recording. The client is a modified version of an
earlier tool used to understand user comfort with resource
borrowing [1] and implement user-driven scheduling [2]. In
the client, the user can express discomfort at any time by
pressing the F11 key. These events drive the UDFS algorithm
which then uses the Windows API to control CPU frequency.
We monitor the CPU frequency using Windows Performance
Count and Log [3]. We next describe the UDFS algorithms
and strategies.

1) Expectations: It is important to note that a simple strat-
egy that selects a static frequency for an application (and/or
for a user) is inadequate for three reasons. First, each user
will be satisfied with a different level of performance for each
application. Second, even when a user is working with an
application, the behavior of the application and the expected

performance varies over time. Applications go through phases,
each with potentially different computational requirements. Fi-
nally, the user’s expected performance is also likely to change
over time as the user’s priorities shift. For these reasons,a
frequency scaling algorithm should dynamically adjust to the
user’s needs.

2) UDFS1 Algorithm: UDFS1 is an adaptive algorithm that
can be viewed as an extension/variant of the TCP congestion
control algorithm [4], [5]. UDFS1 has two state variables:
f , the current control value (CPU frequency) andft (the
current threshold). Adaptation is controlled by three constant
parameters:ρ, the rate of decrease,α = f(ρ), the slow start
speed, andβ = g(ρ), the additive decrease speed. Like TCP,
UDFS1 operates in three modes, as described below.

• Slow Start (Exponential Decrease): Iff > ft, we decrease
f exponentially with time (e.g.,f ∝ 2αt).

• User event avoidance (Additive Decrease): If no user
feedback is received andf ≤ ft, f decreases linearly
with time, f ∝ βt.

• User event (Multiplicative Increase): When the user ex-
presses discomfort at levelf we immediately setft =
ft−1 and setf to the initial (highest) frequency.

This behavior is virtually identical to that of TCP Reno, except
for the more aggressive setting of the threshold. Additionally,
unlike TCP Reno, we also controlρ, the key parameter that
controls the rate of exponential and linear increase from button
press to button press. In particular, for every user event, we
updateρ as followsρi+1 = ρi

(

1 + γ × Ti−TAV I

TAV I

)

whereTi is
the latest inter-arrival time between user events andTAV I is the
target mean inter-arrival time between user events, as currently
preset by us.γ controls the sensitivity to the feedback.

We set our constant parameters (TAV I = 120, α = 1.5, β =
0.8, γ = 1.5) based on the experience of two of the authors
using the system. These parameter values were subsequently
validated via user studies (Section III). Ideally, we would
empirically evaluate the sensitivity of UDFS1 performanceto
these parameters. However, it is important to note that any
such study would require having real users in the loop, and
thus would be excessively slow. Testing five values of each
parameter on 20 users would require 312 days (based on 8
users/day and 45 minutes/user). For this reason, we decidedto
choose the parameters based on qualitative evaluation by the
authors and then validate them by evaluating the whole system
with the choices. We observed that Windows DVFS causes
the system to run at the highest frequency during the whole
execution period except the first few seconds. On the other
hand, the UDFS1 scheme causes the processor frequency to
increase only when the user expresses discomfort. Otherwise,
it slowly decreases.

3) UDFS2 Algorithm: UDFS2 tries to find the lowest fre-
quency at which the user feels comfortable and then stabilize
there. For each frequency level possible in the processor, we
assign an intervalti, the time for the algorithm to stay at that
level. If no user feedback is received during the interval, the
algorithm reduces the frequency fromfi to fi+1. The default



interval is 10 seconds for all levels. If the user is irritated at
control levelfi, we reset the frequency level tofi−1 and we
update all of our intervals via:

ti−1 = αti−1

tk = βtk,∀k.k 6= i − 1

i = min(i − 1, 0)

Here α > 1 is the rate of interval increase andβ < 1 is
rate of interval decrease. In our study,α = 2.5 andβ = 0.8.
This strategy is motivated by the conjecture that the user was
comfortable with the previous level and the algorithm should
spend more time at that level. Again, because users would
have to be in the inner loop of any sensitivity study, we have
chosen the parameters qualitatively and evaluated the whole
system using that choice, as described in Section III.

III. E VALUATION

UDFS employs user feedback to customize processor fre-
quency to the individual user. The amount of feedback from
the user is reasonable, and declines quickly over time as an
application or set of applications is used.

Our experiments were done using an IBM Thinkpad T43P
with a 2.13 GHz Pentium M-770 CPU and 1 GB memory
running Microsoft Windows XP Professional SP2. Although
eight different frequency levels can be set on the Pentium M-
770 processor, only six can be used due to limitations in the
SpeedStep technology. We ran a study with 20 users. The user
study took around 45 minutes for each user. First, users fill out
a questionnaire stating level of experience in different O/S and
applications. It was followed by a brief period of acclimation to
the performance of our machine. Each user was asked perform
the following tasks for UDFS1: Microsoft PowerPoint plus
music (4 minutes); 3D Shockwave animation (4 minutes);and
FIFA game (8 minutes). The user repeated the same set of
tasks for UDFS2.

Figure 2 illustrates the performance of the UDFS2 algorithm
in our study (UDFS1 and PowerPoint are omitted for space
constraints, but are similar). Each graph shows, as a func-
tion of time, the minimum, average, maximum, and standard
deviation of user-driven CPU frequency, aggregated over our
20 users. Notice that there is large variation in acceptable
frequency among the users for the animation and game. For
both algorithms it is very rare to see the processor run at
the maximum CPU frequency. Even the most sophisticated
users were comfortable with running the tasks with lower
frequencies than those selected by the dynamic Windows
DVFS scheme.

A. CPU Dynamic Power Improvement

We used the system described in Section II-B, recording fre-
quency over time. We then combine this frequency information
to derive CPU power savings for UDFS. For reference, we used
the nominal core voltage given in the datasheet [6] at different

0

500

1000

1500

2000

2500

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

(a) UDFS2 - Shockwave

0

500

1000

1500

2000

2500

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

(b) UDFS2 - FIFA Game
Fig. 2. Frequency vs. time, UDFS2, aggregated, 20 users.

operating frequencies. The dynamic power consumption of a
processor is directly related to frequency and supply voltage
and can be expressed using the formulaPdyn = V 2CF , which
states that dynamic power is equal to the product of voltage
squared, capacitance, and frequency.

Figure 3 presents both individual user results and average
results for UDFS1 and UDFS2 for three different applications.
The vertical axis show the percentage improvement for power
over the Windows native DVFS scheme. For the Shockwave
animation, we see mixed responses from the users, although on
average UDFS1 and UDFS2 reduce the power consumption by
15.6% and 32.2%, respectively. UDFS2 performs better for this
application because the users can be satisfied by ramping up to
a higher frequency rather than the maximum frequency. Note
that UDFS1 immediately moves to the maximum frequency
on a button press. User 17 with UDFS1 is anomalous. This
user wanted the system to perform better than the hardware
permitted and thus pressed the button virtually continuously
even when it was running at the highest frequency.

The FIFA game also exhibits considerable variation among
users. Using conventional DVFS, the system always runs at
the highest frequency. The UDFS schemes try to throttle down
the frequency over the time. They therefore reduce the power
consumption even in the worst case (0.9% and 2.1% for
UDFS1 and UDFS2, respectively) while achieving better im-
provements, on average (16.1% and 25.5%, respectively). For
PowerPoint, UDFS1 and UDFS2 reduce power consumption
by an average of 18.4% and 17.0%, respectively. On average,
the power consumption can be reduced by 24.9% over existing
DVFS schemes for all three applications using the UDFS2
algorithm.



-15

-10

-5

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(a) PowerPoint Music

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(b) 3D Shockwave Animation

-10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(c) FIFA Game
Fig. 3. UDFS power improvement over Windows DVFS.

B. System Power Measurement

To further measure the impact of our techniques, we re-
played the traces from the user study of the previous sectionon
our laptop. The laptop is connected to a National Instruments
6034E data acquisition board attached to the PCI bus of a host
workstation running Linux, which permits us to measure the
power consumption of the entire laptop. Note that during the
measurements, we have turned off the display of the laptop
to make our readings closer to the CPU power consumption.
Ideally, we would have preferred to measure CPU power
directly for comparison with results of the previous section,
but we do not have the surface mount rework equipment
needed to do so. For the Shockwave animation, UDFS1 and
UDFS2 reduce the power consumption by 17.2% and 33.6%,
respectively. In the FIFA game, UDFS1 and UDFS2 save
15.5% and 29.5% of the power consumption, respectively. On
average, the power consumption of the overall system can be
reduced by 22.1% for all three applications across all the users.

We have analyzed the experimental results further to in-
vestigate whether the UDFS schemes statistically reduce the
power consumption. We applied the student t-test on the power
readings observed during the simulations. For both UDFS1 and
UDFS2, the student t-test revealed that the mean of the power
consumption is reduced with over 0.999 confidence interval
for all the studied applications.

IV. RELATED WORK

Dynamic voltage and frequency scaling (DVFS) is an ef-
fective technique for microprocessor energy and power con-
trol [7]. Other DVFS algorithms use task information, such
as measured response times in interactive applications [8], [9]
as a proxy for the user. In Vertigo [10] the authors proposed
a latency-based voltage scaling technique. Unlike Vertigo, we
monitor theuser instead of the application. Anand et al. [11]
discussed the concept of a control parameter that could be used
by the user. However, they focus on the wireless networking
domain, not the CPU. Second, they do not propose or evaluate
a user interface or direct user feedback. To the best of our
knowledge, the UDFS work is the first to employ direct user
feedback instead of a proxy for the user.

V. CONCLUSION

We have identified user pessimism as a key factor holding
back effective power management for processors with support
for DVFS. In response, we have developed and evaluated
User-Driven Frequency Scaling (UDFS). UDFS techniques
dramatically reduce CPU power consumption in comparison
with existing DVFS techniques. Extensive user studies show
that UDFS reduces the system power by 22.1% on average
compared to the Microsoft Windows XP DVFS scheme. More
detailed results can be found in our technical report [12].

REFERENCES

[1] A. Gupta, B. Lin, and P. A. Dinda, “Measuring and understanding user
comfort with resource borrowing,” inProceedings of the 13th IEEE
International Symposium on High Performance Distributed Computing
(HPDC 2004), June 2004.

[2] B. Lin and P. Dinda, “Putting the user in direct control ofcpu schedul-
ing,” Department of Electrical Engineering and Computer Science,
Northwestern University, Tech. Rep. NWU-EECS-06-07, August 2006.

[3] Microsoft Corporation, “Performance Logs and Alerts overview,”
http://www.microsoft.com/windows2000/en/advanced/help/.

[4] W. Stevens, “TCP Slow Start, Congestion Avoidance, FastRetransmit
and Fast Recovery Algorithms,” inInternet RFC 2001, 1997.

[5] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” inProceedings
of the Conference on Communications Architectures, Protocols and
Applications, 1994, pp. 24–35.

[6] Intel Corporation, “Intel Pentium M Processor Thermal Management,”
http://www.intel.com/support/processors/mobile/pm/sb/CS-007971.htm.

[7] B. Brock and K. Rajamani, “Dynamic Power Management for Embedded
Systems,” inProceedings of the IEEE SOC Conference, 2003.

[8] J. Lorch and A. Smith, “Using User Interface Event Information
in Dynamic Voltage Scaling Algorithms,” inTechnical Report
UCB/CSD-02-1190, Computer Science Division, EECS, University
of California at Berkeley, August 2002., 2002. [Online]. Available:
citeseer.ist.psu.edu/lorch03using.html

[9] L. Yan, L. Zhong, and N. K. Jha, “User-perceived Latency based
Dynamic Voltage Scaling for Interactive Applications,” inProceedings
of ACM/IEEE Design Automation Conference (DAC ’05), 2005.

[10] K. Flautner and T. Mudge, “Vertigo: Automatic performance-setting for
linux,” in Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

[11] M. Anand, E. Nightingale, and J. Flinn, “Self-tuning Wireless Network
Power Management,” inThe Ninth Annual International Conference on
Mobile Computing and Networking (MobiCom’03), 2003.

[12] A. Mallik, B. Lin, P. Dinda, G. Memik, and R. Dick, “Process and user
driven dynamic voltage and frequency scaling,” Department ofElectrical
Engineering and Computer Science, Northwestern University, Tech. Rep.
NWU-EECS-06-11, August 2006.


