

Computer Science Department

Technical Report
NWU-CS-04-33
April 19, 2004

Effects and Implications of File Size/Service Time
Correlation on Web Server Scheduling Policies

Dong Lu Huanyuan Sheng Peter A. Dinda

Abstract

Recently, size-based policies such as SRPT and FSP have been proposed for scheduling
requests in web servers. SRPT and FSP are superior to policies that ignore request size,
such as PS, in both efficiency and fairness given heavy-tailed service times. However, a
central assumption that is usually made in implementing size-based policies in a web
server is that the service time of a request is strongly correlated with the size of the file it
serves. This paper shows how the performance of SRPT and FSP are affected by the
degree of this correlation. We developed a simulator that supports both M/G/1/m and
G/G/n/m queuing models. The simulator can be driven with trace data, which can be
taken from the logs of modified Apache servers, or which can be produced by a workload
generator we have developed that allows us to control the correlation. Using both trace
data and generated data, we find that the degree of correlation has a dramatic effect on
the performance of SRPT and FSP. In response, we propose and evaluate domain-based
scheduling, a simple technique that better estimates connection times by making use of
the source IP address of the request. Domain-based scheduling improves SRPT and FSP
performance on web servers, particularly in regimes where correlation is low, thus
making size-based policies such as these more broadly deployable.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-
0112891, ANI-0301108, EIA-0130869, and EIA-0224449. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the National Science Foundation (NSF).

Keywords: Web server scheduling; Queuing models; Simulations; Correlation; SRPT, FSP

Effects and Implications of File Size/Service Time
Correlation on Web Server Scheduling Policies

November 6, 2003

Dong Lu
Dept. of Computer Science

Northwestern University
Evanston, IL 60201� donglu � @cs.northwestern.edu

Huanyuan Sheng
Dept. of IEMS

Northwestern University
Evanston, IL 60208� h-

sheng � @northwestern.edu

Peter A. Dinda
Dept. of Computer Science

Northwestern University
Evanston, IL 60201� pdinda � @cs.northwestern.edu

ABSTRACT
Recently, size-based policies such as SRPT and FSP have been pro-
posed for scheduling requests in web servers. SRPT and FSP are supe-
rior to policies that ignore request size, such as PS, in both efficiency
and fairness given heavy-tailed service times. However, a central as-
sumption that is usually made in implementing size-based policies in
a web server is that the service time of a request is strongly corre-
lated with the size of the file it serves. This paper shows how the
performance of SRPT and FSP are affected by the degree of this cor-
relation. We developed a simulator that supports both M/G/1/ � and
G/G/ � / � queuing models. The simulator can be driven with trace
data, which can be taken from the logs of modified Apache servers, or
which can be produced by a workload generator we have developed
that allows us to control the correlation. Using both trace data and
generated data, we find that the degree of correlation has a dramatic
effect on the performance of SRPT and FSP. In response, we propose
and evaluate domain-based scheduling, a simple technique that better
estimates connection times by making use of the source IP address of
the request. Domain-based scheduling improves SRPT and FSP per-
formance on web servers, particularly in regimes where correlation is
low, thus making size-based policies such as these more broadly de-
ployable.

1. INTRODUCTION
In a web server, requests continuously arrive to be serviced.
A request requires a certain service time to be completed, time
whose components include the CPU, the disk, and the network
path. A request is queued when it arrives and remains in the

Effort sponsored by the National Science Foundation un-
der Grants ANI-0093221, ACI-0112891, ANI-0301108, EIA-
0130869, and EIA-0224449. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views
of the National Science Foundation (NSF).

system until it is complete, the total time from arrival to com-
pletion being the sojourn time or response time. Scheduling
policies determine which requests in the queue are serviced at
any point in time, how much time is spent on each, and what
happens when a new request arrives. Common goals of the
scheduling policy are to minimize the mean sojourn time (re-
sponse time of the request), the average slowdown (the ratio
of its response time to its size), and to behave fairly to all re-
quests.

Many policies are possible. First Come First Served (FCFS) is
a non-preemptive policy in which the requests are run to com-
pletion in the order in which they were received. A more com-
mon policy is Processor Sharing (PS), which is preemptive. In
PS all requests in the queue are given an equal share of the
web server’s attention. Generalized Processor Sharing (GPS)
generalizes PS with priorities. Often, FCFS can be combined
with PS or GPS, with FCFS dispatching of requests from the
queue to a pool of processes or threads that are collectively
scheduled using PS or GPS. These polices ignore the service
time of the request.

Recently, size-based scheduling policies, those that incorpo-
rate the service time of the request into their decisions, have
been proposed for use in web servers. Harchol-Balter, et al,
have proposed the use of the Shortest Remaining Processing
Time (SRPT) scheduling policy in web servers [21, 22], showed
how to incorporate it into actual implementations [20, 22], and
studied how SRPT can help a web server to gain performance
under both persistent and transient overload [38]. The Fair So-
journ Protocol (FSP) is a modified version of SRPT that has
been proven to be more efficient and fair than PS given any
arrival sequence and service time distribution [18].

SRPT has been studied since the 1960s. Shrage first derived
the expression for the response time in an M/G/1 queue [36].
For a general queuing system (G/G/1) Schrage proved in 1968
that SRPT is optimal in the sense that it yields—compared to
any other conceivable strategy—the smallest mean value of
occupancy and therefore also of waiting and delay time [35].
Schassberger obtained the steady state appearance of the M/G/1
queue with SRPT policy in 1990. Perera studied the variance

of delay time in ������������	�

��� queuing systems and con-
cluded that the variance is lower than FIFO and LIFO [33].
Bux introduced the SRPT principle into packet networks [12]
in 1983, using the message size as the service time.

An objection to SRPT is that it is possible to design an ad-
versarial workload in which SRPT leads to the starvation of
large jobs [40]. In other words, SRPT can behave unfairly.
However, under the workload models that are believed to be
correct for web servers (A Poisson process modeling requests
and a bounded Pareto distribution modeling the heavy-tailed
file size distribution, M/G/1) SRPT performs very well [8].

In the implementation of size-based polices such as SRPT and
FSP on a web server, the service time of the request is needed.
The common assumption is that the service time is the size
of the file being served, as this is very easy to discover when
the request enters the system. More broadly, the assumption
is that the service time is strongly correlated to the file size.
In this paper, we examine the validity of this assumption, and
the impact that the degree of correlation between file size and
service time has on the performance of SRPT and FSP.

To evaluate this impact, we developed a simulator that can sup-
port PS, SRPT, and FSP in both M/G/1/ � and G/G/ � / � . The
simulator operates on a trace of request arrivals, which can
come either from an augmented Apache [1] web server log, or
from a trace generator. The trace contains the request arrivals,
the file sizes, and the actual service times in microseconds.
We use traces that we have captured on our department-level
web server, and traces captured by others on web caches. Our
trace generator allows us to control the correlation coefficient
between file size and service time in a trace.

We study G/G/ � / � in addition to M/G/1/ � because previous
research [32, 16] has shown that Poisson processes are valid
only for modeling the arrival of user-initiated TCP sessions
such as the arrival of TELNET connections and FTP connec-
tions. HTTP arrivals are not Poisson. That is because HTTP
document transmissions are not entirely initiated by the user:
the HTTP client will automatically generate a series of addi-
tional requests to download embedded files, thus resulting in a
more bursty process. Previous work [16] pointed out that the
aggregated interarrival times of HTTP requests can be mod-
eled with a heavy-tailed Weibull distribution.

Crovella, et al found that WWW traffic showed self-similarity
and proposed possible explanations for the phenomenon [15].
This work also pointed out that many characteristics of web
can be modeled using heavy-tailed distributions, including the
distribution of transfer times, the distribution of user requests
for documents, the underlying distribution of documents sizes
available in the web, and the interarrival time of requests. Bar-
ford, et al built the discovered web server workload charac-
teristics into SURGE [10], a representative synthetic analytic
workload generator.

There has been significant work on the G/G/ � queuing model.
Tabet-Aouel, et al gave analytic approximations for the mean
sojourn time of � (�����) priority classes in a stable G/G/c/PR
queue with general class interarrival and service time distri-

butions and � (�����) parallel servers under pre-emptive re-
sume (PR) scheduling [29]. Boxma, et al considered a GI/G/1
queue in which the service time distribution and/or the inter-
arrival time distribution has a heavy tail, i.e., a tail behavior
like ����� with ���! "�#� , such that the mean is finite but the
variance is infinite. Depending on whether the service time
distribution is heavier than that of the interarrival time distri-
bution, they concluded that the stationary waiting time can be
modeled as either a Kovalenko distribution or a negative ex-
ponential distribution [11]. Xia, et al analyzed the asymptotic
tail distribution of stationary virtual waiting times in a single-
server queue with long-range dependent arrival process and
subexponential service times [44]. However, we are aware of
no analytical results on G/G/ � / � for SRPT or FSP schedul-
ing in regimes where interarrival times and service times are
heavy-tailed. The work we describe in this paper is based on
measurement and simulation.

Using our infrastructure, and measured and synthesized trace
data, we address the following questions:

1. What is the actual degree of correlation between file size
and service time in practice? (Section 2)

2. How does the performance of SRPT, FSP, and PS vary
with the degree of correlation between file size and ser-
vice time under G/G/ � / � and M/G/1/ � ? (Section 3)

3. Is there a simple and low-overhead estimator for service
time that would make SRPT and FSP on M/G/1/ � and
G/G/ � / � perform better? (Section 4)

It is important to point out that our results in addressing ques-
tions 2 and 3 are largely independent of our results for question
1, and the algorithm we develop in response to question 4 pro-
vides benefits to SRPT and FSP over a wide range of possible
answers to question 1.

Our measurements show that the assumption that file size and
service time are strongly correlated is unwarranted—the corre-
lation is, in fact, often rather weak. We speculate that the rea-
son for this phenomenon is that the bottleneck for file transfer
is in the network and different clients have different available
bandwidth to the web server.

Our simulation experiments with generated traces show that
the performance of file size-based SRPT and FSP are strongly
related to the degree of correlation (
) between file size and
service time. For low values of
 , these scheduling policies
perform worse than PS. For our web server traces,
 is indeed
low enough that both file-size based SRPT and FSP perform
worse than PS. However, we find that SRPT can perform bet-
ter than PS once
 crosses a rather low threshold of about

%$'& (*)+�-,/.�(*)+�-0�1 . In other words, SRPT needs some degree
of correlation, but not much. As
 increases, its performance
continues to improve.

These results led us to believe that a better estimator for ser-
vice time was needed. We refer to our estimator as a domain
estimator, and the use of our domain-based estimator with a

Queuing Model Description�����������
m Poisson arrival process;

General service time distribution;
Single server ; Limited queue capacity � .�������

n
�
m General arrival process (Pareto and Weibull);

General service time distribution;
� servers ; Limited queue capacity � .

Figure 2: Queuing models used in the paper. Both Pareto
and Weibull service time distributions are considered.

size-based scheduling policy such as SRPT or FSP as domain-
based scheduling. The basic idea is to use the high order 	
bits of the source IP address to assign the request to one of
��
 domains. For each domain, we estimate the service rate
(file size divided by service time) based on all previous com-
pleted transfers to the domain. The service rate is then used to
estimate the service time of a new request based on its file’s
size. Based on our traces, there is a strong relationship be-
tween the correlation of these estimates and the actual service
time, which grows with the number of bits 	 used. In short, by
choosing 	 appropriately, we can create enough correlation to
make SRPT and FSP perform well. Surprisingly, 	 can be kept
relatively small, making the implementation of domain-based
scheduling feasible and fast. Throughout the paper, we refer
to the scheduling policies as listed in Figure 1, and refer to the
queuing models used as listed in Figure 2.

2. IS FILE SIZE A GOOD INDICATOR
OF SERVICE TIME?

Size-based SRPT scheduling appeared in digital communica-
tion networks research in 1983 [12]. In this context, the service
time was taken to be equal to the transmission time of a mes-
sage, which is proportional to the length of the message stored
in the node buffers. A web server serving static requests ap-
pears superficially similar in that it transmits files to the client.
However, there are differences. First, in the digital commu-
nication network context, the work represented by the service
time is pushing the bits of the message onto the wire, while
for the web server context, the work involves end-to-end coop-
eration along an entire shared heterogeneous path. Although
most transfers are likely to be dominated by the bottleneck
bandwidth in the path and the latency of the path, there are
multiple possible bottlenecks along the path and they can vary
with time due to packet losses and congestion. Second, the
disk(s), memory system(s), and CPU(s) of the web server and
the client are also potential bottlenecks. These complexities
suggest that the service time of a request may not be propor-
tional or even well correlated with the size of the file it serves.

There are several possible definitions for service time in the
web server context. For example, we could focus on a bot-
tleneck resource on the server, such as the CPU, and define
the service time as the total CPU time needed to execute the
request. Alternatively, we could treat the CPU, disk, and net-
work link of the server as a single resource and consider the
total non-blocked time of a request on it. We could also take a
holistic view and consider it the time spent on the bottleneck
resource on the path from server to client. We take the position
that the service time of a request is the time that the combina-
tion of server, client, and network would take to finish the re-

quest given no other requests in the whole end-to-end system
(no load on any resource). In the following sections, we use
this definition and argue that our measurement methodology
measures it by verifying that the loads on the resources of the
end-to-end system that we measure are miniscule.

To measure correlation between file size and service time we
use the correlation coefficient (Pierson’s
) [6]. The correla-
tion between two random variables � (file size) and
 (ser-
vice time) is

���� .�
�� $
��� �& � .�
 1� �����
& � 1�� ��� �

&
�1 (1)

where
��� �& � .�
 1 is the covariance of � and
 ,

�����
& � 1 is

the variance of � and
�����

&
 1 is the variance of
 .
 is
in the range &"!�� . � 1 . Its absolute value denotes the strength
of correlation.

��#�$
&
 1 $ (/) % indicates that
'& $ ��% % of

the variance of
 can be explained by � . Our results in this
paper show only positive correlation
)((. We estimate

using sample variance and covariance. A confidence interval
can be computed for
 based on the sample. For our results,
the sample size is quite large, leading to intervals that are tiny
compared to the differences we point out for quite small * -
values. Hence, we do not plot them.

To answer the question posed by this section, we examine

values for a large trace acquired by us from a typical web
server, as well as 70 traces collected from web cache servers.
The main conclusion is that
 can vary considerably from
server to server, and can be quite small.
 $ (/) �,+ for our
web server trace, while the web caches have
 evenly dis-
tributed in the range & (*)+����.�(*) -*��1 . In subsequent sections, we
use our web server trace to drive our simulation. However, we
also use synthetically generated traces in which we can control

 directly. While many web server traces are available, none
that we could find record the actual service time of the request
and thus are not useful for the purposes of our study.

2.1 Measurement on a typical web server
We modified the code of the Apache log module so that it
records the response time of each request with microsecond
granularity (using the IA32 cycle counter to measure time).
Under extremely low load conditions, as we document below,
this time is equivalent to the service time according to our def-
inition above.

We deployed the module on our department-level web site. We
collected data from September 15, 2003 to October 19, 2003.
This trace includes approximately 1.5 million HTTP requests,
among which less than 2% are dynamic PHP requests that col-
lectively took less than 1% of the total service time recorded.
(/.�0 % of our requests and (/.�. % of the service time in the
trace are for static pages. Hence, our web sever is dominated
by static web content. Others claim that static content domi-
nates web traffic [25, 24, 22] and thus our results are compa-
rable to theirs. The requests originated from 110 “/8” IP net-
works, 7220 “/16” IP networks and 31250 “/24” IP networks
spread over the world. We claim that this server is typical.
However, the conclusions of this paper are also supported by
other measured traces and generated traces.

Scheduling Policy Description

PS Processor Sharing scheduling policy.
FSP Ideal Fair Sojourn Protocol, service times are known exactly.
SRPT Ideal Shortest Remaining Processing Time, service times are known exactly.
FSP-FS File size-based Fair Sojourn Protocol, file sizes are used as service times.
SRPT-FS File size-based Shortest Remaining Processing Time, file sizes are used as service times.
FSP-D Domain-based Fair Sojourn Protocol, estimated service times are used as service times.
SRPT-D Domain-based Shortest Remaining Processing Time, estimated service times are used as service times.

Figure 1: Scheduling policies used in the paper.

y = 0.2349e-4.1253x

R2 = 0.9559

0.00001

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

CPU Load

L
o

g
10

(P
[L

o
ad

>x
])

Figure 3: Complementary distribution of CPU load on the
web server.

y = 0.0723e-0.0001x

R2 = 0.9855

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 20000 40000 60000 80000 100000

Hard disk read IO in KB/sec

L
o

g
10

(P
[d

is
k

re
ad

 IO
>x

])

Figure 4: Complementary distribution of hard disk read
I/O on the web server.

The bottleneck resource of a request in this trace is hardly
ever the CPU of the server. The web server is a dual pro-
cessor Pentium IV Xeon machine running Red Hat Linux 7.3.
CPU load is defined as the exponentially averaged number of
jobs in the run queue of the OS kernel scheduler (the Unix
load average), The machine can serve two CPU intensive ap-
plications with full CPU cycles. Figure 3 plots the comple-
mentary distribution of the CPU load during the period of the
traces with the vertical axis in log scale to better show details.
This distribution can be modeled with a exponential distribu-
tion with
 &�� (/) .�- . Figure 3 shows that the probability
� & � � ��� � ��� (!��1 is minuscule. The memory system is also
clearly not a bottleneck based on these results as significant
cache stalls would show up as increased load.

The bottleneck resource of a request in this trace is hardly ever

Char read Block read WebRead Char write Block write

23604.2 1399254.2 29879.3 16777.9 50355.8

Figure 5: Hard disk to memory bandwidth, KB/sec.

the disk system of the server. The machine’s file systems re-
side on a NFS-mounted (over private gigabit Ethernet SAN)
RAID 5 storage server. Figure 4 shows the complementary
distribution of the storage system reads during the period of
the trace. The vertical axis is log scale to show details. The
distribution can be modeled with a exponential distribution
with
�& close to 0.99.

We benchmarked the storage system using Bonnie, which is a
widely used utility that measures the performance of Unix file
system operations that an application sees [2]. Bonnie reads
and writes a 100 MB file (marked uncacheable) by character or
by block. Both sequential and random access are tested. Ran-
dom block and character throughput give us upper and lower
bounds on the performance of file system I/O that Apache sees.
We also wrote our own benchmark (WebRead) to get a sense
of the typical read performance that Apache sees. WebRead
simply reads the files in our access log, in order, as fast as
possible. Not surprisingly, the WebRead performance is in be-
tween the character read and block read benchmark given by
Bonnie. WebRead’s performance is shown Figure 4 as a ver-
tical line, while all the results are shown Figure 5. We can
see that probability of read throughput being larger than the
throughput measured in the WebRead benchmark is � (*) ((*� ,
while no recorded read throughput was larger than Bonnie’s
block read benchmark. Notice also that the highest through-
puts seen are lower than the 125 MB/s throughput limit of the
Ethernet SAN, hence the SAN is also not a bottleneck.

As it is clear that the CPU, memory, and disk systems are not
bottlenecks, if there is any bottleneck it is in the network or
the client. Based on many earlier measurements of load be-
havior on clients that indicate their resources spend much of
their time idle [27, 17], it is extremely unlikely for a client to
be the bottleneck. If there is any bottleneck, it is in the net-
work path to the client, which agrees with earlier work [22].
Given the low rate of requests, it is highly likely that a single
request would perform similarly to the requests in our trace.
Hence, the high-resolution response time that we record in the
Apache log is a close approximation of the service time as de-
fined above. Obviously, there are situations where CPU or disk
can become bottlenecks, such as in virtual server configuration
in which one physical server hosts several web sites, or on a
web server that hosts database-based dynamic web content.

Figure 6: File size versus service time in web trace.

File Size ��������
KB 0.0616���	�
���������

KB 0.1121��
������
KB 0.1033

Figure 7:
 depends on file size.

Given the provenance of the trace, we can now use it to an-
swer our question. Figure 6 is a log-log scatter plot of file size
versus service time. Visually, we can see hardly any correla-
tion between file size and service time. File transfer times vary
over several orders of magnitude with same file size. Over the
entire 1.5 million requests in the trace, we find that
 is a very
weak 0.14.
 varies slightly with file size, as can be seen in
Figure 7.

Within a domain,
 is larger. We define precisely what we
mean by a domain and connect it with CIDR in Section 4.
Here, simply consider it as a single network that may be recur-
sively decomposed into subnetworks. For example, Figure 8
is a log-log scatter plot of file size versus service time for re-
quests originating with a single “/16” IP network, where the
network address is 16 bits.
 $ (*) ��% for this situation. As the
domain grows smaller (has fewer IP addresses, or more bits
representing its network address),
 grows larger. For exam-

Figure 8: File size versus service time for particular /16
network.

ple, if we focus on a particular “/24” LAN subnet (24 bit net-
work address) that is contained within the previous network,

 $ (*) ,�. . We speculate that the reason for this behavior is
that network bandwidth heterogeneity from the server to the
clients of a domain decreases as the size of the domain de-
creases. This provides a different, but compatible, explanation
for earlier findings [8] that file size-based SRPT scheduling
can decrease mean sojourn time by a factor of 3-8 over PS in a
LAN for load higher than 0.5, but can only decrease the mean
sojourn time by 25% on the WAN. In Section 3, our simu-
lations show that when
 � (*) + , as on the example LAN,
file size-based SRPT outperforms PS by a factor of about 3,
but when the
 � (*) � (recall that our web trace showed

 $ (*)+� +) file size-based SRPT performs similar to PS and
can perform worse than PS if
 goes down further, when file
sizes are hardly any indicator of service times at all.

We are actively acquiring additional traces, but this is diffi-
cult because web server modifications are necessary to acquire
fine grain service times. Many available traces, such as those
from the Internet Traffic Archive [3], our institution’s other
web servers, and others provide only file size, not service time
and thus are unsuitable for our work. We have, however, ac-
quired many traces from web caches, described next, and built
a trace generator that allows us to control
 as well as the dis-
tributions of service time and interarrival time, described later.

2.2 Measurement on web caches
We examined 70 sanitized access logs from Squid web caches,
made available through the ircache site [4]. These traces con-
tain fine grain service times in addition to file sizes. Inter-
net object caching stores frequently requested Internet objects
(i.e., pages, images, and other data) on caches closer to the re-
quester than to the source. Clients can then use a local cache
as an HTTP proxy, reducing access time as well as bandwidth
consumption.

Squid is a high-performance proxy caching server for web
clients. Unlike traditional caching software, Squid handles
all requests in a single, non-blocking, I/O-driven process [5],
making it very easy to determine the service time of a request.
Squid is similar to a web server in that it also accepts HTTP re-
quests and sends back requested files, but it is different in that
the Squid servers form a overlay network that uses the Inter-
net Cache Protocol (ICP) to perform server selection for web
clients and load balancing among the cache servers [42, 41].
A client sees that it typically receives a reply from the near-
est cache server, while from the Squid cache servers’ points
of view, the Internet is divided into several regions with each
cache server typically serving requests for a specific region.

Because a single Squid cache serves clients largely from one
region of the Internet, the bandwidth heterogeneity to the clients
is likely to be less than that seen by a web server, which ser-
vices clients regardless of region. This, we believe, should
lead to larger
 being measured on Squid caches than on web
servers. The partitioning of the network as seen from the web
server into domains that we describe in Section 4 builds on this
observation.

While we cannot (and do not) use web cache traces as prox-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Correlation Coefficient between file size and service time

P
[R

>x
]

Figure 9: Complementary distribution of
 in web cache
traces.

ies for web server traces, it is instructive that
 on the caches
is also rather weak. Figure 9 shows a complementary distri-
bution plot of the
 values in the 70 traces. The traces were
collected from 10 squid web cache servers over 7 days Each
trace contains from 0.1 to 1.1 million requests. The smallest

 $ (*)+��� , while the largest
 $ (*) -/� . The mean is 0.34 with
standard deviation 0.13. Given that we expect that
 for web
servers will be lower than
 for web caches by the reasoning
in the previous paragraph, that measured
 s on web caches
are low suggests that
 on web servers is likely to be low as
well.

In combination with the low
 seen on our web server trace,
we believe that we can now answer the question posed by this
section in the negative: The correlation between request file
size and service time on web servers is weak.

3. HOW DOES PERFORMANCE DEPEND
ON CORRELATION?

We have seen that request service time on web servers and
caches is not strongly correlated with request file size. Here,
we investigate, via simulation, how the degree of this corre-
lation (
) affects the performance of size-based scheduling
policies (SRPT and FSP, where actual service time is known
a priori, and SRPT-FS and FSP-FS, where the file size is used
as the service time) and compare with a size-oblivious policy
(PS). Our metrics are the mean sojourn time and mean queue
length. We find that for these metrics, the performance of
SRPT-FS and FSP-FS is dramatically affected by
 , falling
below that of PS for low
 values. Furthermore, for a fixed
low
 , as we measured on our web server, increasing load
causes increasing divergence of performance of the file-size
based policies (SRPT-FS, FSP-FS) from their ideal versions
(SRPT, FSP).

3.1 Simulator and traces
Our simulator supports both M/G/1/ � and G/G/ � / � queuing
systems. It is driven by a trace in which each request con-
tains the arrival time, file size, and service time. In addition to
the web server trace described in the previous section, we also
use synthetic traces generated with interarrival times from ex-
ponential, bounded Pareto, and Weibull distributions, and file

sizes from bounded Pareto and Weibull distributions, and ser-
vice times from bounded Pareto. In the synthetic traces, we
directly control the correlation,
 , between file size and ser-
vice time, as described later. Each simulation throughout the
rest of the paper is repeated 20 times.

We validated our simulator by (a) checking stability and as-
suring that Little’s law is never violated on each run, using
effective arrival rate is appropriate for limited queue capacity,
(b) repeating the simulations described in Friedman and Hen-
derson’s FSP paper [18] with nearly identical results, and (c)
comparing our simulation results with the analytic results of
Bansal and Harchol-Balter’s SRPT fairness paper [8].

3.2 Controlling
 in synthetic traces
Given some parametric distribution (exponential, bounded Pareto
or Weibull here) and a target correlation coefficient
 , we
generate pairs of random numbers where each number of the
pair is chosen from its required distribution and where the two
numbers of the pair are correlated to degree
 . To do this,
we use a simplified Normal-To-Anything (NORTA) method.
The basic ideas and proofs behind NORTA were developed
by Cario and Nelson [13]. Given the distributions

��� $������	��
����
�
and

��� $
����
�
�������������

, our target correlation coefficient
 and our
sample size � , the following algorithm generates � pairs:

1 Set ��� �
2 Generate two independent random numbers������� & �! #" � � �%$.
3 let & � � ���'� & & �(�*) ���,+ " �.- � & $) � &4 let / � � 10'2 �436587 " & ��� � � �%$,/ & � 90'2 �:36587 " & & � � � �%$ where 90'2 �:36587 " & � � � � �%$ is

the CDF value of a standard normal distribution at & � for; � � �=< . It can be shown that / � �?>A@ � � �CB � ; � � ��<
5 let D ;FE�GIHJ;FK�G �L7 � �M ��
JN
OQP	R�S�OUTJR " / � $,H%G 2IV ;FWJG%XF; � G �Y7 � �M ��
 S�R�Z�[JOU\�R=]QOQ^_R " / & $ where 7 M �Q
 N
OQP	R�S=OQTJR ,7 M ��
 S=R=Z�[JOQ\=R�]UO�^.R are the CDFs of our desired distributions for

file size and service time respectively. 7 � �M ��
 is the inverse of7 M ��
 .
6 Repeat steps 2-5 times generating pairs` " D ;FE�GIHJ;FK�G�a � H
G 2IV ;FWJG
XF; � G�ab$=c

.
` D ;FE�GIHJ;FK�G�a �Ud � � �Je
e
e
� c

and
` H
G 2IV ;FWJG
XF; � G�a �Ud � � �%eJe
e
� c are two correlated

random numbers each following their own distributions.
7 Compute the correlation coefficient of

` D ;FE�GIHJ;FK�GCafc ,` H%G 2IV ;FWJG%XF; � G�afc
and call it � �����_g . If � �����_g
 � , then

decrease � and go to step 2. If � �����_g � � , then increase �
and go to step 2. If � �����_g*h � then stop.

Figure 10 gives some examples of file size/service time pairs
generated for different values of
 .

To show the correctness of this algorithm, we can try follow-
ing analysis: First, it is easy to see that i � .Ci &�j � � (*.-��� andk � . k & j � & (*.-��1 , thus l � ��m $I�=n m j

��� $ �����	��
����%�
and

$ m � � � m � � � m j��� $
����
�
�o�����U�Q���

. Second, it can be shown that i � is correlated
with i & and thus so is k � with k & . Intuitively it follows that� l � ��m $I��n m a � and

� $ m � � � m � � � m a � are correlated as well. Cario
and Nelson showed that (1) p �U���_g is a nondecreasing contin-
uous function of p , and (2) p �����qg and p share the same sign.
These properties guarantee the termination of the above sim-
plified NORTA algorithm and let us bound the values of

that can be achieved by NORTA. If we sample p from 0 to 1,

(a) R=0.13 (b) R=0.78

Figure 10: Examples of generated file size/service time
pairs.

� Lower bound Upper bound

Interarrival 1.32 0.07177
�) � ���

Service time 2.0 0.1188
� � �

Figure 11: Bounded Pareto Distribution Parameters.

we can estimate the range of p �����_g , producing a set of sets of
pairs, ordered with increasing
 as a side effect. This is ex-
actly how we generated correlated random pairs of file size and
service time. Depending on the structures of different distribu-
tions, p �����qg may not always take a full range of & (*.-��1 , which
is why some of the results we show here have a restricted range
of
 .

3.3 Simulation with synthetic traces
To study the effects of the correlation
 between file size and
service time on the performance of SRPT-FS and FSP-FS, we
generated traces with controlled correlation as described in
the previous section. We used bounded Pareto distributions
for both file size and service time. For the arrival process,
we consider Poisson arrivals (exponential interarrival times),
heavy tailed Pareto arrivals, and heavy tailed Weibull arrivals.
For all the simulations of this section, the load (mean arrival
rate divided by mean service rate) is 0.9, and queue capacity is
5000. A single server is assumed. Multiple servers are consid-
ered in the next section. Figure 11 shows the parameters of the
bounded Pareto distributions used for the simulations shown
in Figure 12 and Figure 13. We used identical Bounded Pareto
distribution for both file size and service time distributions.

The scheduling policies used (SRPT, SRPT-FS, FSP, FSP-FS,
and PS) are described in Figure 1. Each graph data point we
show data point represents several simulations, each of 0.5
million requests.

Figure 12 shows the effects of
 on the mean sojourn time
of different scheduling polices with a Poisson arrival process,
corresponding to M/G/1/ � queuing model, the interarrival mean
used to generate Poisson process is 0.278. Figure 13 shows the
effects of
 on the mean sojourn times of different scheduling
polices with a heavy tailed Pareto arrival process, correspond-
ing to G/G/1/ � queuing model. The mean sojourn time of the
policies with a heavy tailed Weibull arrival process is similar
to that of Pareto arrival except that both SRPT-FS and FSP-FS
need a slightly bigger R to work better than PS.

FSP-FS is very sensitive to
 . For Poisson arrivals, its perfor-
mance is not stable until
 ((*) 0 , when its performance con-

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

Correlation coefficient R

M
ea

n
 s

o
jo

u
rn

 t
im

e

PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 12: Mean sojourn time versus
 , synthetic traces,
M/G/1/ � , Pareto service times, Poisson arrivals.

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

Correlation coefficient R

M
ea

n
 s

o
jo

u
rn

 t
im

e

PS

FSP

SRPT

SRPT-FS

FSP-FS

Figure 13: Mean Sojourn Time versus
 , synthetic traces,
G/G/1/ � , Pareto service times, Pareto arrivals.

verges with that of PS, and slowly overtakes it. For Pareto ar-
rivals, its performance exceeds that of PS only when
 (�(*) � .
The performance of SRPT-FS increases much more quickly
with increasing
 . When
 is very small, SRPT-FS and FSP-
FS essentially behave like a random scheduling policy, with
difficulty to predict performance. When
 exceeds a low thresh-
old, SRPT-FS performance exceeds that of PS in both M/G/1/ �
and G/G/1/ � . The threshold is in the range & (/)+�-,*.�(/) � 0 1 . Be-
yond this point, SRPT-FS’s performance increases geomet-
rically with increasing
 . Recall that our web trace shows

 $ (*)+�,+ , which suggests that SRPT-FS performance will be
similar to PS performance for the trace. The figures clearly
show that SRPT performance is strongly tied to
 , even at
high values of
 . Improvements in estimating actual service
time can dramatically improve SRPT for a wide range of
 .

The lack of accurate service time information has been an
important reason why SRPT is not widely deployed [37, 8].
However, SRPT appears to be better suited than FSP to work-
ing under conditions where it is difficult to estimate service
time, and its performance scales nicely as more accurate ser-
vice time estimates are available. We show in Section 4 that
such improvements are possible for web servers using the sim-
ple, efficient techniques.

3.4 Simulation with web server trace

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0 0.5 1 1.5 2

Load

M
ea

n
 S

o
jo

u
rn

 T
im

e
PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 14: Mean sojourn time versus queue load for web
trace, M/G/1/ � , Poisson arrivals

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2

Load

M
ea

n
 Q

u
eu

e
L

en
g

th

PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 15: Mean queue length versus queue load for web
trace, M/G/1/ � , Poisson arrivals.

Here we consider the performance of SRPT, SRPT-FS, FSP,
FSP-FS, and PS on the measured web server trace (
 $ (*)+� +)
described in Section 2.1. The mean service time is 1250 mi-
croseconds. The scheduling policies are described in Figure 1.
Note that although our web server trace represents very low
load, here we vary the load in the system by controlling the ar-
rival process of the requests represented in the trace. We make
use of Poisson arrivals, Pareto arrivals, and Weibull arrivals
and control their mean rate in order to control the load. Load
control is important, because, as we discussed in Section 2.1,
the load captured in the trace is rather low. The time units are
microseconds throughout the rest of the paper.

We begin with M/G/1/ � (Poisson arrivals, file sizes and ser-
vice times as in the trace). Figure 14 shows the mean sojourn
times of different scheduling policies with increasing load,
while Figure 15 shows the mean queue lengths. In both fig-
ures, ideal SRPT and FSP perform very well and identically.
However, SRPT-FS and FSP-FS both perform quite poorly,
and their performance diverges dramatically from their ideal
performance with increasing load. SRPT-FS and FSP-FS per-
form worse than SRPT and FSP in all our simulations.

Next, we consider G/G/1/ � (Pareto arrivals, file sizes and ser-
vice times as in the trace). Figure 16 shows the mean so-
journ times of different scheduling policies with increasing

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 0.5 1 1.5 2

Load

M
ea

n
 S

o
jo

u
rn

 T
im

e
in

 M
ic

ro
se

co
n

d
s

PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 16: Mean sojourn time versus load, G/G/ � / � ,
Pareto arrivals.

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2

Load

M
ea

n
 Q

u
eu

e
L

en
g

th

PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 17: Mean queue length versus load, G/G/ � / � ,
Pareto arrivals.

load, while Figure 17 shows the mean queue length of dif-
ferent scheduling policies with increasing load on the queue.
In both figures, ideal SRPT and FSP perform very well, and
identically. However, again, SRPT-FS and FSP-FS perform
worse, and their behavior diverges from the ideal with increas-
ing load.

Finally, we consider what happens if we fix the mean interar-
rival time and increase the number of servers, G/G/ � / � (Pareto

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 2 4 6 8 10 12 14 16

Number of Servers

M
ea

n
 S

o
jo

u
rn

 T
im

e
(M

ic
ro

se
co

n
d

s)

PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 18: Mean sojourn time versus number of servers,
G/G/ � / � , Pareto arrivals, Mean interarrival time 162.5
microseconds.

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10 12 14 16

Number of Servers

M
ea

n
 Q

u
eu

e
L

en
g

th
PS

FSP

SRPT

FSP-FS

SRPT-FS

Figure 19: Mean queue length versus number of servers,
G/G/ � / � , Pareto arrivals, Mean interarrival time 162.5
microseconds.

arrivals, file sizes and service times as in the trace). We fixed
the interarrival mean at 162.5 microseconds, and mean ser-
vice time for each server at 1250 microseconds. Figure 18
shows the mean sojourn times of different scheduling policies
with the increasing number of servers. Figure 19 shows the
the mean queue length of different scheduling policies with
increasing load on the queue. Again, we see that ideal SRPT
and FSP perform very well and identically, but that SRPT-FS
and FSP-FS perform much more poorly, especially with few
servers. As the number of servers increases, the differentia-
tion between the policies decreases. Not surprisingly, in what
is effectively a low-load regime, there is not much difference
between the policies.

For a queue with unlimited queue capacity, the mean sojourn
time tends to be infinity if the load is over unity. But our simu-
lator takes a limited queue capacity to reflict the reality, there-
fore, the server start to reject jobs when overloaded for some
time (the queue is full) and both mean sojourn time and mean
queue length are meanful. They represent the queue behavior
of the server under transient overload.

We have also investigated a Weibull arrival process, where the
interarrival times of requests in the trace are drawn from a
Weibull distribution. The results are similar to those for the
Pareto arrival process shown earlier.

Our simulations, using both synthetic traces and our measured
web server trace have found that the performance of SRPT-FS
and FSP-FS, SRPT and FSP where request file size is used as
request service time, is highly dependent on the correlation

between file size and service time. With low enough
 , per-
formance can degrade so far that PS is preferable to either of
these policies. Our trace shows such a low
 . Furthermore,
over wide range of
 , which includes the range seen in the
web cache traces we examined, increasing
 dramatically in-
creases performance for SRPT-FS. In the next Section, we de-
scribe and evaluate a better estimator for service time that uses
file size, the network “domain” of the client, and past perfor-
mance to the domain to produce more accurate service time
estimates. Using these estimates, SRPT and FSP can be made
to perform much better than simply using file size.

4. DOMAIN-BASED SCHEDULING
We have found that request file size and service time are weakly
correlated and that the performance of size-based scheduling
policies are strongly dependent on the degree of this correla-
tion. Given these results, a natural question is whether there is
a better service time estimator than file size, one whose esti-
mates are more strongly correlated with actual service time.
Such an estimator must also be lightweight, requiring little
work per request. For this reason, we cannot use active prob-
ing techniques such as those used in tools like the Network
Weather Service [43]. We also cannot use passive network-
layer techniques, such as those used in Remos [26], because
we do not have access to the network layer throughout the
path. Instead, we use past web requests as our probes, sim-
ilar in spirit to SPAND [39].

4.1 Statistical stability of the Internet
Domain-based scheduling relies on the Internet being statisti-
cally stable over periods of time, particularly from the point
of view of the web server. Fortunately, there is significant evi-
dence that this is the case. This evidence falls into two classes,
routing stability and spatial and temporal locality of end-to-
end TCP throughput.

Routing stability: Paxson [31, 30] proposed two metrics for
route stability, prevalence and persistency. Prevalence, which
is of particular interest to us here, is the probability of observ-
ing a given route over time. If a route is prevalent, than the
observation of it allows us to predict that it will be used again.
Persistency is the frequency of route changes. The two met-
rics are not closely correlated. Paxson’s conclusions are that
Internet paths are heavily dominated by a single route, but that
the time periods over which routes persist show wide varia-
tion, ranging from seconds to days. However, 2/3 of the In-
ternet paths Paxson studied had routes that persisted for days
to weeks. Chinoy found that route changes tend to concen-
trate at the edges of the network, not in its “backbone” [14].
Barford, et al measured the web performance in the wide area
network and found that the routes from/to the client to/from a
web servers was asymmetric, but very stable [9].

Spatial locality and temporal locality of end-to-end TCP
throughput: Balakrishnan, et al analyzed statistical models
for the observed end-to-end network performance based on
extensive packet-level traces collected from the primary web
site for the Atlanta Summer Olympic Games in 1996. They
concluded that nearby Internet hosts often have almost identi-
cal distributions of observed throughput. Although the size of
the clusters for which the performance is identical varies as a
function of their location on the Internet, cluster sizes in the
range of 2 to 4 hops work well for many regions. They also
found that end-to-end throughput to hosts often varied by less
than a factor of two over timescales on the order of many tens
of minutes, and that the throughput was piecewise stationary
over timescales of similar magnitude [7]. Seshan, et al applied
these findings in the development of the Shared Passive Net-
work Performance Discovery (SPAND) system [39], which
collected server performance information from the point of
view of a pool of clients and used that history to predict the
performance of new requests. Myers, et al examined perfor-
mance from a wide range of clients to a wide range of servers

and found that bandwidth to the servers and server rankings
from the point of view of a client were remarkably stable over
time [28]. Yin Zhang, et al [45] found that three Internet path
properties, loss rate, delay and TCP throughput show various
degrees of constancy and concluded that one can generally
count on constancy on at least the time scale of minutes.

4.2 Algorithm
Although the Internet, web servers, and clients form a highly
dynamic system, the stability we pointed out in the previous
section suggests that previous web requests (the web server’s
access log) are a rich history which can be used to better esti-
mate the service time of a new request. We assume that after
processing a request we know (1) its file size, (2) the actual
service time, and (3) the IP address of the client. Collecting
this information is simple and efficient. Our goal is to develop
an efficient estimator that uses a history of such requests, com-
bined with the file size and IP address of the current request to
determine the likely service time of the current request. The
correlation
 between the estimated service time and the ac-
tual service time should be higher than the correlation between
file size and actual service time. Recall that
 must exceed a
threshold in order for SRPT to perform better than PS, and as

 increases, the performance of SRPT increases.

Classless Inter Domain Routing (CIDR) [23, 34, 19] was
proposed in 1993 as “a strategy for address assignment of
the existing IP address space with a view to conserve the ad-
dress space and stem the explosive growth of routing tables
in default-route-free routers”. The CIDR strategy has been
widely deployed since 1993. “One major goal of the CIDR
addressing plan is to allocate Internet address space in such a
manner as to allow aggregation of routing information along
topological lines”. Consider a domain, a neighborhood in the
network topology. The broad use of CIDR implies that routes
from machines in the domain to a server outside the domain
will share many hops. Similarly, the routes from the server to
different machines in the domain will also have considerably
overlap. This also means that the routes will be likely to share
the same bottleneck network link and therefore have similar
throughput to/from the server. The smaller the domain, the
more the sharing.

The aggregation of CIDR is along a hierarchy of increasingly
larger networks and is reflected in IP addresses. The first 	
bits of an IP address gives the network of which the address
is a part, the first 	 !#� bits give the broader network that
contains the first network, and so on. We exploit this hierarchy
in domain-based scheduling, the algorithm of which is given
below.

1. Use the high order 	 bits of the client IP address to clas-
sify the clients into ��
 domains, where the 	 bits are
treated as the domain address.

2. Aggregate past requests to estimate the service rate (or
representative bandwidth) for each domain. This can be
done with several estimators, but our experiments show
that the estimator 	��"$

� S�] performs the best. Here 	��
is the representative service rate,

�

is the sum of the re-

quested file sizes from the domain, and 	
�

is the sum of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 1618 20 2224 26 2830 32
Bits used to define a domain

R
 (

co
rr

el
at

io
n

 c
o

ff
ic

ie
n

t
b

et
w

ee
n

 a
ct

u
al

 s
er

vi
ce

ti

m
e

an
d

 e
st

im
at

ed
 s

er
vi

ce
 t

im
e)

Figure 20: Correlation
 versus number of bits used to
define a domain 	 .

the service times for these requests. Notice that updating
this estimate after a request has been processed is trivial:
simply add the request’s file size and service time to

�

and 	

�
, respectively (two reads, two adds, two writes).

For each domain, we store
�

and 	
�
. An array of these

pairs is kept, indexed by the domain address. The total
state size is �
 � � floating point numbers.

3. For each incoming client request, the web server first
extracts the domain address, indexes the array and com-
putes 	�� for the domain. It then estimates the request’s
service time as �

��
������������
$

� S
�	� , where l
 is the re-

quest file size. The estimator requires a logical shift,
two reads, a division, and a multiply. For a request from
a heretofore unobserved domain, which occurs exactly
once per domain, we simply use file size as the estimate.

4. Apply a size-based scheduling policy such as SRPT us-
ing the estimated service times. We suffix the schedul-
ing policy with “-D”: SRPT-D, FSP-D.

As we might expect, as domains become smaller (gets larger),
predictive performance increases, at the cost of memory to
store the state. Figure 20 shows the relationship between 	 ,
the number of bits used to define a domain and the correlation

 between the actual service time and estimated service time.
The figure is derived from our web server trace.
 jumps to
0.26 with 	 $ % bits, beyond the threshold at which SRPT
begins to perform better than PS. Notice that this is a mere
32 domains (state size of 256 bytes with 4 byte floats). After
	 $ � + bits, there are only very small increases of
 , probably
because at this point we have divided the Internet into LANs,
where each machine on a LAN shares a common route to ev-
ery other machine in the Internet, and thus shares the same
bottlenecks. The maximum
 we were able to achieve was
0.704.

4.3 Performance evaluation
To evaluate domain-based scheduling (SRPT-D and FSP-D,
also see Figure 1), we use the methodology of Section 3.4.
We replay our web trace with Poisson, Pareto, and Weibull ar-
rivals to control load. We vary 	 , the number of high-order bits

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Bits used to define a domain

M
ea

n
 S

o
jo

u
rn

 T
im

e

PS

FSP

SRPT

FSP-FS

SRPT_FS

FSP-D

SRPT-D

Figure 21: Mean sojourn time versus 	 for web trace,
domain-based scheduling, M/G/1/ � , Poisson arrivals with
Mean Interarrival time 1269, load 0.90.

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Bits used to define a domain

M
ea

n
 Q

u
eu

e
L

en
g

th

PS

FSP

SRPT

FSP-FS

SRPT-FS

FSP-D

SRPT-D

Figure 22: Mean queue length versus 	 for web trace,
domain-based scheduling, M/G/1/ � , Poisson arrivals with
Mean Interarrival time 1269, load 0.90.

we use to define a domain. In this section, we used a longer
trace than in the previous sections. The R between file size and
service time remains unchanged, but the mean service time is
slightly lower, which is 1145 instead of 1250 microseconds.

Figures 21 and 22 show the mean sojourn time and mean
queue length of all the scheduling policies with Poisson ar-
rivals. Notice that PS, FSP, SRPT, FSP-FS, and SRPT-FS are
flat lines. PS ignores service time. FSP and SRPT have ex-
act knowledge of the service times (they represent the ideal
performance of these policies). FSP-FS and SRPT-FS use file
size as a proxy for service time (representing current practice).
Notice that as we increase the number of bits 	 used to define a
domain, the performance of SRPT-D and FSP-D first exceeds
that of PS and finally converges to near the ideal performance.

While SRPT-D’s performance increases continuously, with di-
minishing returns, with increasing 	 , FSP-D is rather insensi-
tive until 	�$ ��- to � + bits, at which point its performance
jumps dramatically and comes very close to SRPT-D’s. Since

 doesn’t increase much beyond 	 $ � + bits, as we might
expect, the performance of SRPT-D and FSP-D plateaus.

Figures 23 and 24 show the mean sojourn time and mean

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Bits Used to define a Domain

M
ea

n
 S

o
jo

u
rn

 T
im

e

PS

FSP

SRPT

FSP-FS

SRPT-FS

FSP-D

SRPT-D

Figure 23: Mean sojourn time versus 	 for web trace,
domain-based scheduling, G/G/1/ � , Pareto arrivals with
� $ ��) , � , Lower bound 84, Upper bound % � �-(� , load
0.88.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Bits used to define a domain

M
ea

n
 Q

u
eu

e
L

en
g

th

PS

FSP

SRPT

FSP-FS

SRPT-FS

FSP-D

SRPT-D

Figure 24: Mean queue length versus 	 for web trace,
domain-based scheduling, G/G/1/ � ; Pareto arrivals with
� $ ��) , � , Lower bound 84, Upper bound % � �-(� , load
0.88.

queue length of all the scheduling policies with Pareto arrivals
as a function of 	 . The effects here are very similar to those
discussed previously, as are the results for Weibull arrivals.

Our performance evaluation of SPRT-D and FSP-D demon-
strates that better, practical estimators of service time are pos-
sible and that they can dramatically improve the performance
of size-based scheduling policies on web servers.

5. CONCLUSIONS AND FUTURE WORK
This paper has made the following contributions:

� We have demonstrated that the assumption that file size
is a good indicator of service time for web servers is
unwarranted. File size and service time are only weakly
correlated. The implication is that size-based scheduling
policies such as SRPT and FSP are likely to perform
worse than expected.

� We have evaluated the performance of SRPT-FS and
FSP-FS, SRPT and FSP using the assumption, with vary-
ing correlation between file size and service time. We
found that their performance does indeed vary dramati-

cally with correlation. In some cases SRPT-FS and FSP-
FS can actually perform worse than PS.

� We have proposed, implemented, and evaluated a better
service time estimator that makes use of the hierarchical
nature of routing on the Internet and the history of past
requests available on the web server. We refer to SRPT
and FSP augmented with our domain-based estimator as
SRPT-D and FSP-D. The state size of our estimator is a
parameter.

� We have found that, with a small state size, SRPT-D
can outperform PS. With a practical state size, SRPT-D
can exhibit close to ideal performance. FSP-D requires
a significantly larger state size to perform close to its
ideal. SRPT reacts very quickly to increasingly accurate
service time estimates.

Fairness is an important concern in the deployment of domain-
based scheduling. Slowdown has been used in previous re-
search work [8, 22] as the fairness metric, but slowdown has
two possible interpretations. Slowdown can be defined as so-
journ time over service time or sojourn time over file size. We
have studied fairness using both interpretations and our initial
results show that SRPT-D outperforms PS in fairness under
most conditions using both. We are working to extend these
initial results.

A limitation of this work is that we have focused on web servers
that provide static content. We speculate that service time esti-
mators for web servers that provide dynamic content may also
be possible. Small improvements in any such estimators would
lead to significant improvements in the performance of algo-
rithms such as SRPT. We are exploring this possibility. We
are also considering hierarchical domain-based estimators in
which a request would match a series of concentric domains
defined by the high order 	�. 	 !���.)))-. (bits of the source
address. The request would then use the service time estimate
provided by smallest domain which has sufficient samples, or
the domain for which past estimates have been most accurate.

6. REFERENCES
[1] The apache software foundation. http://www.apache.org/.

[2] Bonnie, a unix file system benchmark.
http://www.textuality.com/bonnie/.

[3] The internet traffic archive. http://ita.ee.lbl.gov/.

[4] The ircache project. http://www.ircache.net/.

[5] The squid web proxy cache project.
http://www.squid-cache.org/.

[6] ALLEN, A. O. Probability, statistics, and queueing theory with
computer science applications. Academic press, Inc., 1990.

[7] BALAKRISHNAN, H., SESHAN, S., STEMM, M., AND KATZ,
R. H. Analyzing Stability in Wide-Area Network Performance.
In ACM SIGMETRICS (June 1997).

[8] BANSAL, N., AND HARCHOL-BALTER, M. Analysis of SRPT
scheduling: investigating unfairness. In
SIGMETRICS/Performance (2001), pp. 279–290.

[9] BARFORD, P., AND CROVELLA, M. Measuring web
performance in the wide area. Performance Evaluation Review
27, 2 (1999), 37–48.

[10] BARFORD, P., AND CROVELLA, M. Generating representative
web workloads for network and server performance evaluation.
In SIGMETRICS (98).

[11] BOXMA, O., AND COHEN, J. Heavy-traffic analysis for the
G/G/1 queue with heavy-tailed distributions. Queueing Systems
33 (1999), 177–204.

[12] BUX, W. Analysis of a local-area bus system with controlled
access. IEEE Transactions on Computers 32, 8 (1983),
760–763.

[13] CARIO, M. C., AND NELSON, B. L. Numerical Methods for
Fitting and Simulating Autoregressive-to-Anything Processes.
INFORMS Journal on Computing 10, 1 (1998), 72–81.

[14] CHINOY, B. Dynamics of internet routing information. In
SIGCOMM (1993), pp. 45–52.

[15] CROVELLA, M., AND BESTAVROS, A. Self-Similarity in
World Wide Web Traffic: Evidence and Possible Causes. In
SIGMETRICS’96 (Philadelphia, Pennsylvania, May 1996).
Also, in Performance evaluation review, May 1996,
24(1):160-169.

[16] DENG, S. Empirical model of WWW document arivals at
access links. In IEEE International Conference on
Communication (June 1996).

[17] DINDA, P., AND O’HALLARON, D. An evaluation of linear
models for host load prediction. In 8th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-8) (1999).

[18] FRIEDMAN, E. J., AND HENDERSON, S. G. fairness and
efficiency in web server protocol. In
SIGMETRICS/Performance (2003).

[19] FULLER, V., LI, T., YU, J., AND VARADHAN, K. (rfc1519)
Classless Inter-Domain Routing (CIDR): an address assignment
and aggregation strategy, September 1993.
http://www.faqs.org/rfcs/rfc1519.txt.

[20] HARCHOL-BALTER, M., BANSAL, N., AND SCHROEDER, B.
Implementation of srpt scheduling in web servers. Tech. Rep.
CMU-CS-00-170, Carnegie Mellon School of Computer
Science, October 2000.

[21] HARCHOL-BALTER, M., CROVELLA, M. E., AND PARK, S.
The case for srpt scheduling in web servers. Tech. Rep.
MIT-LCR-TR-767, MIT lab for computer science, October
1998.

[22] HARCHOL-BALTER, M., SCHRDER, B., BANSAL, N., AND
AGRAWAL, M. Size-based scheduling to improve web
performance. ACM Transactions on Computer Systems (TOCS)
21, 2 (May 2003).

[23] HINDEN, R. (rfc1517) Applicability statement for the
implementation of Classes Inter-Domain Routing (CIDR),
September 1993. http://www.faqs.org/rfcs/rfc1517.txt.

[24] KRISHNAMURTHY, B., AND REXFORD, J. Web Protocols and
Practice: HTTP1.1, Networking Protocols, Caching, and
Traffic Measurements. Addison-Wesley, 2001.

[25] MANLEY, S., AND SELTZER, M. Web Facts and Fantasy. In
Proceedings of the 1997 Usenix Symposium on Internet
Technologies and Systems (USITS97) (Monterey, CA, 1997).

[26] MILLER, N., AND STEENKISTE, P. Network status
information for network-aware applications. In Proceedings of
IEEE Infocom 2000 (March 2000). To Appear.

[27] MUTKA, M. W., AND LIVNY, M. The available capacity of a
privately owned workstation environment. Performance
Evaluation 12, 4 (July 1991), 269–284.

[28] MYERS, A., DINDA, P. A., AND ZHANG, H. Performance
characteristics of mirror servers on the internet. In INFOCOM
(1) (1999), pp. 304–312.

[29] N., T. A., AND D.D, K. On the approximation of the mean
response times of priority classes in a stable G/G/C/PR queue.
Journal of the Operational Research Society 43 (1992),
227–239.

[30] PAXSON, V. End-to-end routing behavior in the Internet. In
Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (New York, August 1996), vol. 26,4
of ACM SIGCOMM Computer Communication Review, ACM
Press, pp. 25–38.

[31] PAXSON, V. End-to-end routing behavior in the Internet.
IEEE/ACM Transactions on Networking 5, 5 (1997), 601–615.

[32] PAXSON, V., AND FLOYD, S. Wide area traffic: the failure of
Poisson modeling. IEEE/ACM Transactions on Networking 3, 3
(1995), 226–244.

[33] PERERA, R. The variance of delay time in queueing system
M/G/1 with optimal strategy SRPT. Archiv fur Elektronik und
Uebertragungstechnik 47, 2 (1993), 110–114.

[34] REKHTER, Y., AND LI, T. (rfc1518) An architecture for IP
address allocation with CIDR, September 1993.
http://www.faqs.org/rfcs/rfc1518.txt.

[35] SCHRAGE, L. E. A proof of the optimality of the shortest
remaining processing time discipline. Operations Research 16
(1968), 678–690.

[36] SCHRAGE, L. E., AND MILLER, L. W. The queue M/G/1 with
the shortest remaining processing time discipline. Operations
Research 14 (1966), 670–684.

[37] SCHREIBER, F. Properties and applications of the optimal
queueing strategy srpt - a survey. Archiv fur Elektronik und
Uebertragungstechnik 47 (1993), 372–378.

[38] SCHROEDER, B., AND HARCHOL-BALTER, M. Web servers
under overload: How scheduling can help, June 2002.

[39] SESHAN, S., STEMM, M., AND KATZ, R. H. SPAND: Shared
passive network performance discovery. In USENIX Symposium
on Internet Technologies and Systems (1997).

[40] SILBERSCHATZ, A., AND GALVIN, P. Operating System
Concepts, 5th Edition. John Wiley Sons, 1998.

[41] WESSELS, D., AND CLAFFY, K. (rfc2186) Internet cache
protocol (ICP), version 2, September 1997.
http://www.faqs.org/rfcs/rfc2186.html.

[42] WESSELS, D., AND CLAFFY, K. ICP and the Squid Web
cache. IEEE Journal on Selected Areas in Communication 16, 3
(1998), 345–357.

[43] WOLSKI, R. Dynamically forecasting network performance
using the network weather service. Cluster Computing 1, 1
(1998), 119–132.

[44] XIA, C. H., AND LIU, Z. Queueing systems with long-range
dependent input process and subexponential service times. In
Sigmetrics (2003), pp. 25–36.

[45] ZHANG, Y., DU, N., E PAXSON, AND SHENKER, S. On the
constancy of internet path properties. In ACM SIGCOMM
Internet Measurement Workshop (2001).

